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Fairness in Graph Mining: A Survey
Yushun Dong, Jing Ma, Chen Chen, and Jundong Li

Abstract—Graph mining algorithms have been playing a significant role in myriad fields over the years. However, despite their
promising performance on various graph analytical tasks, most of these algorithms lack fairness considerations. As a consequence,
they could lead to discrimination towards certain populations when exploited in human-centered applications. Recently, algorithmic
fairness has been extensively studied in graph-based applications. In contrast to algorithmic fairness on independent and identically
distributed (i.i.d.) data, fairness in graph mining has exclusive backgrounds, taxonomies, and fulfilling techniques. In this survey, we
provide a comprehensive and up-to-date introduction of existing literature under the context of fair graph mining. Specifically, we
propose a novel taxonomy of fairness notions on graphs, which sheds light on their connections and differences. We further present an
organized summary of existing techniques that promote fairness in graph mining. Finally, we summarize the widely used datasets in
this emerging research field and provide insights on current research challenges and open questions, aiming at encouraging
cross-breeding ideas and further advances.

Index Terms—Algorithmic Fairness, Graph Mining, Debiasing
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1 INTRODUCTION

Graph-structured data is pervasive in diverse real-world
applications, e.g., E-commerce [94], [112], health care [36],
[51], traffic forecasting [66], [92], and drug discovery [15],
[162]. In recent years, a number of graph mining algorithms
have been proposed to gain a deeper understanding of such
data. These algorithms have shown promising performance
on various graph analytical tasks such as node classifica-
tion [56], [79], [119], [152] and link prediction [4], [95], [96],
[100], which contribute to great advances in many graph-
based applications.

Despite the success of these graph mining algorithms,
most of them lack fairness considerations. Consequently,
they could yield discriminatory results towards certain pop-
ulations when such algorithms are exploited in human-
centered applications [74]. For example, a social network-
based job recommender system may unfavorably recom-
mend fewer job opportunities to individuals of a certain
gender [89] or individuals in an underrepresented ethnic
group [141]. With the widespread usage of graph min-
ing algorithms, such potential discrimination could also
exist in other high-stake applications such as disaster re-
sponse [150], criminal justice [3], and loan approval [127].
In these applications, critical and life-changing decisions
are often made for the individuals involved. Therefore,
how to tackle unfairness issues in graph mining algorithms
naturally becomes a crucial problem.

Fulfilling fairness in graph mining can be non-trivial due
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to two main challenges. The first challenge is to formulate
proper fairness notions as the criteria to determine the
existence of unfairness (i.e., bias). Although a vast amount
of traditional algorithmic fairness notions have been pro-
posed in the context of independent and identically dis-
tributed (i.i.d.) data [41], [102], they are unable to reflect
the relational information (i.e., the topology) in graph data.
For example, the same population can be connected with
different topologies as in Fig. 1a and 1b, where each node
represents an individual, and the color of nodes denotes
their demographic subgroup membership, such as different
genders. Compared with the graph topology in Fig. 1a,
the topology in Fig. 1b has more intra-group edges than
inter-group edges. The dominance of intra-group edges in
the graph topology is a common type of bias existing in
real-world graphs [38], [40], [65], which cannot be cap-
tured by traditional algorithmic fairness notions. The second
challenge is to prevent the graph mining algorithms from
inheriting the bias exhibited in the input graphs [40], [103],
[139], [151]. We present a toy example to demonstrate how
the information propagation mechanism in Graph Neural
Networks (GNNs) [60], [79], [152] induces bias to the output
node embeddings from a biased graph topology in Fig. 1c. In
the input space, the node features are uniformly distributed.
However, when the information propagation is performed
on a biased topology as in Fig. 1b, the information received
by nodes in different subgroups could be biased [40], lead-
ing to a biased embedding distribution in the output space.

There has been emerging research interest in fulfilling
algorithmic fairness in graph mining. Nevertheless, the
studied fairness notions vary across different works, which
can be confusing and impede further progress. Meanwhile,
different techniques are developed in achieving various
fairness notions. Without a clear understanding of the cor-
responding mappings, future fair graph mining algorithm
design can be difficult. Therefore, a systematic survey of
recent advances is needed to shed light on future research.
In this survey, we present a comprehensive and up-to-date
review of existing works in fair graph mining. The main
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(a) Unbiased graph topology (b) Biased graph topology
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(c) An illustrative example of biased node embeddings (learned
through information propagation mechanism of GNNs) induced by
biased input graph.

Fig. 1: Examples of (a) unbiased graph topology, (b) bi-
ased graph topology, and (c) how information propagation
mechanism induces bias in GNNs. Nodes in two different
demographic subgroups are in orange and blue.
contributions of this survey paper are summarized as:
• Novel Fairness Taxonomy. We propose a novel tax-

onomy of fairness notions in graph mining. Such a
taxonomy includes five groups of fairness notions:
group fairness, individual fairness, counterfactual fair-
ness, degree-related fairness, and application-specific
fairness. For each group of fairness notions, we present
their definitions and common quantitative metrics.

• Comprehensive Technique Review. We provide a com-
prehensive and organized review of six groups of tech-
niques that are commonly utilized to promote fair-
ness in graph mining algorithms. For each group of
techniques, we summarize representative formulations
under different fairness notions.

• Rich Public-Available Resources. We collect rich re-
sources of benchmark datasets that can be employed for
fair graph mining research. Therefore, this survey can
facilitate the future development of new approaches to
promote fairness in graph-based applications.

• Challenges and Future Directions. We present the limi-
tations of current research and point out pressing chal-
lenges. Open research questions are also discussed for
further advances.

Connections to Existing Surveys. Although there are sev-
eral survey papers on algorithmic fairness [28], [35], [41],
[102], [109], [120], they mainly focus on the fairness in the
context of i.i.d. data. A few other surveys pay attention
to the algorithmic fairness in relational data [121], [172].
Nevertheless, they are limited within either a certain ap-
plication scenario (e.g., recommender systems) or a certain
type of graph mining algorithm (e.g., machine learning-
based algorithms). Different from them, our survey includes
a detailed and systematic review of fairness in graph mining
algorithms and corresponding applications.

TABLE 1: Notations and the corresponding definitions or
descriptions.

Notations Definitions or Descriptions
| · | Cardinality operator for any set.
E[·] Expectation operator.

< ·, · > Inner product operator.
G The graph data.
V The set of nodes.
E The set of edges.
X The set of node features.
A The seed set in influence maximization.
Nvi The one-hop neighboring node set of vi.
Vi The node set of the i-th sensitive subgroup.
A The adjacency matrix of graph G.

A> The transpose of adjacency matrix.
X The node feature matrix of graph G.
zi The embedding of node vi.
vi The i-th node.
n The size of the node set V .
d The number of node features.
c The class number for node classification.

Intended Audiences. The intended audiences of this survey
are (1) researchers who would like to understand how
fairness is defined and fulfilled in graph mining; and (2)
practitioners who plan to generalize fair graph mining ap-
proaches to different applications.
Survey Structure. The remainder of this survey paper is
organized as follows. Section 2 introduces the notations and
preliminaries. In Section 3, different fairness notions and
corresponding metrics are systematically reviewed. Based
on these fairness notions and metrics, Section 4 introduces
six groups of techniques to fulfill fairness. Rich open-source
benchmark datasets for fairness studies in graph mining
are summarized in Section 5. Section 6 discusses existing
research challenges and open questions for future research.
Finally, Section 7 presents the conclusion of this survey.

2 NOTATIONS AND PRELIMINARIES

In this section, we present important notations used
throughout this paper and preliminaries. The notations and
their definitions (or descriptions) are in Table 1.
Notations. We use bold uppercase letters (e.g., A) and bold
lowercase letters (e.g., z) to denote matrices and vectors,
respectively. For any matrix, e.g., A, we refer to its (i, j)-th
entry as Ai,j , and the transpose of A as A>. We use letters
in calligraphy font (e.g., V) to denote sets.
Preliminaries. In this paper, we use the terminology of
“graph” and “network” interchangeably. We denote a plain
graph as G = (V , E), where V and E represent the set of
nodes and edges, respectively. We use A ∈ {0, 1}n×n to
represent the graph adjacency matrix, where n is the total
number of nodes, and Ai,j = 1 implies that there exists an
edge between node vi and node vj . For graph data with
node features (i.e., attributed networks), we use a matrix
X ∈ Rn×d to denote the node feature matrix, where d is
the number of node features. Unless otherwise specified, for
the convenience of discussion on human-centered fairness,
we consider that each individual is represented as a node
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Fairness Notions 
in Graph Mining

Group Fairness

Individual Fairness

Degree-Related 
Fairness

Counterfactual 
Fairness

Application-
Specific Fairness

Demographic Parity

Equality of Odds

Equality of Opportunity

Recommender Systems

Knowledge Graphs

Fairness Notions in Node Embedding Learning

Fairness Notions in Graph Clustering

Fairness Notions in Information Maximization

Node Pair Distance-Based Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

Fig. 2: Taxonomy of algorithmic fairness notions in graph mining algorithms.

in a graph by default. However, the literature in this survey
and our discussion are not limited in this case. Additional
clarifications will be presented in other scenarios.

3 FAIRNESS NOTIONS IN GRAPH MINING

In this section, we propose a novel taxonomy that cate-
gorizes existing fairness notions in graph mining into five
groups, as presented in Fig. 2. Following our proposed
taxonomy, we hereby organize and introduce these fairness
notions and their corresponding metrics.

3.1 Group Fairness
In many high-stake applications (e.g., loan approval sys-
tems [155], [163]), certain features (e.g., race and gender) are
protected by law to avoid being abused [28], [41], [70], [102].
Additionally, in applications such as online social network-
ing, there are a number of features that users are usually
unwilling to share (e.g., occupation and age) [38]. These fea-
tures are considered as protected or sensitive features [102].
Based on these features, the population can be divided into
different demographic subgroups. Here we refer to these
subgroups as sensitive subgroups. Group Fairness is then
defined upon such sensitive subgroups. Generally speaking,
group fairness requires that the algorithm should not yield
discriminatory predictions or decisions against individuals
from any specific sensitive subgroup [43]. In this section, we
introduce popular fairness notions under group fairness.

3.1.1 Demographic Parity
Demographic Parity (a.k.a. Statistical Parity and Independence)
is first introduced as a notion of group fairness based on
binary sensitive feature(s) in binary classification tasks [43].
The binary sensitive feature divides the population into two
sensitive subgroups (e.g., male/female). In binary classifi-
cation tasks such as deciding whether a student should
be admitted into a university or not, demographic parity
is considered as achieved if the model yields the same
acceptance rate for individuals in both sensitive subgroups.
In graph mining, we first introduce demographic parity in
node classification, followed by several extensions.
Demographic Parity in Node Classification. In node classi-
fication, we assume Ŷ , S ∈ {0, 1} are the random variables
representing the predicted class label and sensitive feature
of a random node in the input graph, respectively. The
criterion of demographic parity is then formulated as

P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 1). (1)

To quantify to what extent the demographic parity is sat-
isfied, ∆DP is defined when both the predicted labels and
sensitive feature(s) are binary [38], [88]. The formulation of
∆DP is given as

∆DP = |P (Ŷ = 1 | S = 0)− P (Ŷ = 1 | S = 1)|. (2)

The intuition here is to measure the acceptance rate differ-
ence between the two sensitive subgroups. However, the
applicable scenarios can be limited if only binary sensitive
attributes are considered. In this regard, several following
works extended demographic parity to multi-class sensitive
feature scenarios [122], [136]. The rationale is that the ac-
ceptance rates given by the algorithm should be the same
across all sensitive subgroups. To quantify demographic
parity for multiple sensitive subgroups, Rahman et al. [122]
leveraged the variance of acceptance rates across all sen-
sitive subgroups, while Spinelli et al. [136] employed the
largest acceptance rate difference among all subgroup pairs.
Extension to Link Prediction. In addition to the node clas-
sification task, demographic parity is also extended to the
link prediction problem [87]. Specifically, we can obtain the
average linking probability of node pairs spanning across
different sensitive subgroups. Then demographic parity is
achieved when such probability is the same for any two
pairs of sensitive subgroups [25], [153]. Formally, assume
(i, j) and (k, l) are the indices of two sensitive subgroup
pairs (indices values can be the same within each tuple).
The criterion of demographic parity is given as

δi,j = δk,l, ∀i, j, k, l, (3)

where δi,j is the average linking probability of node pairs
spanning across the i-th and the j-th sensitive subgroup,
and it is formally defined as

δi,j =
1

Ni,j

∑
v∈Vi

∑
v′∈Vj

P (flink(v, v′) = 1). (4)

Here P (flink(v, v′) = 1) is the probability that the edge
(v, v′) exists according to the link prediction model flink; Vi
and Vj represent the i-th and the j-th sensitive subgroup,
respectively; Ni,j is the number of node pairs spanning
across Vi and Vj , which is formally given as

Ni,j = |{(v, v′) | v ∈ Vi, v′ ∈ Vj}| . (5)

We then introduce a metric ∆link
DP that quantifies demo-

graphic parity in link prediction [25], [128], [153]. Specifi-
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cally, ∆link
DP is defined as the largest absolute difference [153]

between all pairs of δi,j and δk,l, which is defined as

∆link
DP = max

∀i,j,k,l
|δi,j − δk,l|. (6)

Besides, a relaxed criterion of demographic parity has been
defined by only focusing on intra- and inter-subgroup
links [87]. Specifically, denote two random nodes as v and
v′, where (v, v′) ∈ V × V . Assume s and s′ are the sensitive
feature values of node v and v′, respectively. A relaxed
criterion for demographic parity is defined as

P (flink(v, v′) = 1|s = s′) = P (flink(v, v′) = 1|s 6= s′). (7)

Generally, such a criterion requires that for a random pair of
nodes, the probability that they are connected should be the
same, regardless of whether their sensitive feature values
are the same or not. To quantify how well the criterion in
Eq. (7) is satisfied, Disparate Impact (DI) and Balanced Error
Rate (BER) are proposed in [87]. Specifically, DI quantifies
to what level the link prediction model flink prefers to
give positive predictions for nodes with different sensitive
feature values compared with those with the same ones. It
is formally formulated as

DI (flink,G) =
P (flink(v, v′) = 1|s 6= s′)

P (flink(v, v′) = 1|s = s′)
. (8)

A similar strategy is also adopted by BER [87], which
measures the difference between P (flink(v, v′) = 1|s = s′)
and P (flink(v, v′) = 1|s 6= s′).
Extension to Continuous Sensitive Feature(s). Although
demographic parity has been widely used, most related
studies are based on categorical (either binary or multi-class)
sensitive feature(s). To extend the notion of demographic
parity to continuous sensitive feature(s), Jiang et al. [68]
proposed Generalized Demographic Parity (GDP) in node clas-
sification tasks. Specifically, for any sensitive feature value
s, GDP requires that the difference between E[Ŷ | S = s]
and E[Ŷ ] should be as small as possible, where E[·] is the
expectation operator. We then introduce ∆GDP to quantify
how well GDP is achieved:

∆GDP =

∫ 1

0

∣∣∣E[Ŷ | S = s]− E[Ŷ ]
∣∣∣ fS(S = s)dS. (9)

The value of the sensitive feature S is assumed to be
continuous and normalized between 0 and 1; fS(S = s)
is the value of the sensitive feature PDF at S = s. Typically,
a smaller value of ∆GDP indicates a higher level of GDP for
the corresponding algorithm.

3.1.2 Equality of Odds

Equality of Odds is first introduced as a group fairness
notion by Hardt et al. [61] in binary classification tasks.
In general, the algorithm predictions are enforced to be
independent with the sensitive feature(s) conditional on the
ground truth class labels. The rationale is to prohibit the
model from abusing the sensitive feature as a proxy of class
labels for prediction. We introduce equality of odds in node
classification tasks as follows.
Equality of Odds in Node Classification. In node classi-
fication, suppose that the predictions of the graph mining

algorithm Ŷ , the ground truth labels Y , and the sensitive
feature S are all binary. Equality of odds requires that

P (Ŷ = 1|S = 0, Y = y) = P (Ŷ = 1|S = 1, Y = y) (10)

holds for both y = 0 and y = 1. In other words, Eq. (10)
enforces predictions to bear equal TPR (i.e., True Positive
Rate) and FPR (i.e., False Positive Rate) for the two sensitive
subgroups. To quantify how well the equality of odds is sat-
isfied, the largest difference of TPR (and FPR) between any
two sensitive subgroups is often considered [88], [103]. The
notion of equality of odds has also been extended to multi-
class scenarios [136], where the value of TPR (and FPR) is
required to be the same across all sensitive subgroups. To
compute equality of odds in multi-class scenarios, we first
calculate the maximum TPR difference and the maximum
FPR difference between any two subgroups. Equality of
odds is then measured by the larger difference value [136].

3.1.3 Equality of Opportunity
Equality of Opportunity extends the notion of equality of
odds [61]. Specifically, in binary classification tasks, equality
of opportunity only requires the positive predictions to
be independent of sensitive feature(s) for individuals with
positive ground truth labels [61]. We introduce equality of
opportunity in node classification tasks as follows.
Equality of Opportunity in Node Classification. The crite-
rion of equality of opportunity is given as

P (Ŷ = 1|S = 0, Y = 1) = P (Ŷ = 1|S = 1, Y = 1). (11)

It should be noted that in most cases, Ŷ = 1 is an advan-
taged prediction [61]. Therefore, the intuition of equality of
opportunity can be interpreted as: we want to avoid assign-
ing disadvantaged predictions to individuals qualified for
advantaged ones only because of their sensitive subgroup
membership. In this regard, equality of opportunity is often
advocated for economic justice [12], and a typical appli-
cation scenario is job candidate selection. We then intro-
duce a commonly employed quantitative metric ∆EO for
equality of opportunity in node classification. Specifically,
∆EO measures how far the prediction deviates from the
ideal situation that satisfies equality of opportunity. ∆EO

is formally given as

∆EO = |P (Ŷ = 1 | Y = 1, S = 0)

− P (Ŷ = 1 | Y = 1, S = 1)|. (12)

Extension to Link Prediction. Equality of opportunity has
been extended to link prediction tasks [25]. At a high level,
equality of opportunity in link prediction is achieved when
the TPR of link prediction is independent of the underlying
sensitive feature. Formally, the node pairs with predicted
positive links are regarded as the instances with Ŷ = 1,
while the node pairs connected with actual links are the in-
stances with Y = 1. Denote Ni,j = |{(vl, vm)|, vl ∈ Vi, vm ∈
Vj ,Al,m = 1}|, which is the number of ground truth edges
between the i-th and the j-th sensitive subgroups. For node
pairs spanning across the i-th and the j-th subgroups, the
TPR is given as

εi,j =
1

Ni,j

∑
vl∈Vi

∑
vm∈Vj

Pvl,vm1(Aα,β = 1). (13)
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Here, 1(·) is the identity function; Pvl,vm is the predicted
probability that node vl and vm are linked. Generally, if
the TPRs of any two sensitive subgroup pairs are the
same, then they are independent of the sensitive subgroup
membership. Denote (i, j) and (k, l) as the indices of two
sensitive subgroup pairs (indices values can be the same
within each tuple). The criterion of equality of opportunity
is then formulated as

εi,j = εk,l, ∀i, j, k, l. (14)

To quantitatively measure the equality of opportunity in link
prediction, Woodworth et al. [153] proposed ∆link

EO , which is
formally defined as

∆link
EO = max

∀i,j,k,l
|εi,j − εk,l|. (15)

3.1.4 Group Fairness in Node Embedding Learning

Learning fair node embeddings has received much research
attention in recent years, as these fair embeddings can be
employed for various downstream tasks to achieve fair re-
sults. Nevertheless, as node embeddings are mostly leaned
without using the node label information, traditional fair-
ness notions such as demographic parity (introduced in
Section 3.1.1), equality of odds (introduced in Section 3.1.2),
and equality of opportunity (introduced in Section 3.1.3)
cannot be directly grafted. Here we introduce two types of
group fairness notions for node embeddings.
Distribution-Based Fairness. A common criterion of fulfill-
ing fairness for node embeddings is that the distributions
of learned embeddings from different sensitive subgroups
are close to each other [40], [42], [44], [110]. Generally, if
the distributions of embeddings from different sensitive
subgroups are similar, these embeddings are then regarded
as decoupled from the sensitive feature, i.e., they are fair
in terms of group fairness. Typically, distribution-based
fairness is measured by the difference between these em-
bedding distributions, and a common metric to quantify
distribution difference is Wasserstein distance [40], [44].
Model-Based Fairness. The intuition of model-based fair-
ness is to train a new model (e.g., MLP classifier [18] or
SVM [25]) to predict the sensitive feature value based on
the obtained node embeddings. For such a new model, the
incapability of the sensitive feature prediction (e.g., low
prediction accuracy) indicates the decoupling between the
node embeddings and the sensitive feature, which thus
implies a high level of group fairness [159].

3.1.5 Group Fairness in Graph Clustering

Group fairness in graph clustering requires all sensitive
subgroups to be proportionally represented by the nodes
in each cluster [34], [80], [129]. In this scenario, a common
fairness metric is Balance Score [80]. Formally, the balance
score of the cluster Ck (1 ≤ k ≤ K, where K is the total
cluster number) is given as

balance(Ck) = min
i 6=i′,i,i′∈{1,...,H}

|Vi ∩ Ck|
|Vi′ ∩ Ck|

, (16)

where Vi denotes the node set of the i-th sensitive sub-
group; H is the number of sensitive subgroups. Generally,

the balance score of cluster Ck reflects the largest discrep-
ancy of node numbers between any two sensitive sub-
groups in this cluster. Considering that mink balance (Ck) ≤
mini 6=i′ |Vi| / |Vi′ |, a larger minimum balance score over all
clusters indicates a higher level of fairness in clustering [34].

3.1.6 Group Fairness in Influence Maximization

Influence maximization algorithms have been adopted in
various high-stake scenarios such as HIV prevention [166],
financial inclusion [11], and disease transmission [10]. Re-
cently, algorithmic fairness in influence maximization has
also attracted much research attention. In influence maxi-
mization, a set of nodes are initiated as seeds in a graph,
and each seed influences its neighboring nodes by a certain
probability. Given a budget for the number of seed nodes,
the goal of influence maximization is to find a seed node set
to influence the largest number of nodes. Specifically, the
notion of fairness in influence maximization can be defined
from different perspectives as below.
Maxmin Fairness. Maxmin Fairness is first introduced by
Tsang et al. [148] based on Rawlsian theory of justice [125].
Given the seed node setA, the lowest ratio of the influenced
nodes among all sensitive subgroups is given as

Umin = min
i

IG,Vi(A)

|Vi|
,where i ∈ {1, ...,H}. (17)

Here H is the total number of sensitive subgroups; IG,Vi(A)
is the expected number of the influenced nodes in the i-th
sensitive subgroup based on A. Maxmin fairness requires
that Umin should be as large as possible. Meanwhile, the
value of Umin is employed to quantify the level of maxmin
fairness in [148]. However, it should be noted that achieving
a large Umin can greatly jeopardize the goal of maximizing
the influence over the whole population. For instance, Tsang
et al. [148] pointed out that one sensitive subgroup can be
poorly connected with other nodes in the graph. In such a
case, many seed nodes would be assigned to this subgroup
to promote the influence rate within such subgroup, despite
the fact that they can be reassigned to other subgroups to
achieve a higher influence rate over the whole population.
Diversity. Tsang et al. [148] proposed another fairness
criterion named Diversity Constraint. Here, it is assumed
that a budget of seed nodes is provided for each sensitive
subgroup, and the budget size is proportional to the sub-
group size. Denote the seed node set for Vi as A′i, where
|A′i| = dK |Vi| /|V|e. Here K is the budget for the seed
node set of the whole population (i.e., A), and d·e is the
ceiling function. Then the authors defined IG[Vi] (A′i) as
the expected number of the influenced nodes in Vi, where
these nodes can only be influenced by the seed nodes in A′i
via intra-group edges. Diversity constraint requires that the
choice of A should satisfy IG,Vi(A) ≥ maxA′i IG[Vi] (A′i) for
all i. In other words, for each sensitive subgroup, A should
achieve an influence rate larger or equal to the influence rate
when this group is assigned a proportional number of seed
nodes, given that the influence only flows via intra-group
edges. If such criterion is satisfied, the sensitive subgroups
with fewer (than a proportional number) seed nodes would
still obtain enough amount of influence from other sensi-
tive subgroups. The percentage of sensitive subgroups that
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violates such criterion is used to measure the diversity as
in [148].
Utility Difference-Based Fairness. A different desidera-
tum of fair influence maximization is to ensure that the
influenced node ratios in different sensitive subgroups are
similar. Demographic Parity in Influence Maximization (DP) is
defined following such idea [5], [123], [138], and its criterion
is formulated as

|ui(A)− uj(A)| ≤ δ, ∀i, j ∈ {1, ...,H}, where δ ∈ [0, 1).
(18)

Here A is the seed set within budget K . δ is the largest
tolerance for the influenced node ratio difference between
any two sensitive subgroups, while ui(A) is the expected
ratio of influenced nodes in the i-th sensitive subgroup
under seed set A. To measure utility difference between dif-
ferent subgroups, Maximum Disparity in Normalized Utilities
is proposed in [5]. Formally, it is defined as

max
i,j∈{1,...,H}

|ui(A)− uj(A)| . (19)

Generally, Eq. (19) measures the maximum disparity of the
influenced node ratio between any two sensitive subgroups.
Seed Set-Based Fairness. In influence maximization, the
selection of seed node set could also encounter unfairness
issues. For example, if the propagation of HIV awareness is
originated from a set of seed nodes with unbalanced sensi-
tive subgroup membership, some sensitive subgroups could
have the privilege to know critical knowledge about HIV
much earlier than other sensitive subgroups. This indicates
that a biased seed node set could potentially put some sensi-
tive subgroups in disadvantaged situations [137]. Therefore,
it is critical to study the fairness of seed node selection.
A common criterion of seed set-based fairness is that the
number of seed nodes in any sensitive subgroup should
be proportional to its population [45], [137]. Formally, for
1 ≤ i, j ≤ H (H is the total number of sensitive subgroups),
the criterion is given as

|{v ∈ A | v ∈ Vi}|
|Vi|

=
|{v ∈ A | v ∈ Vj}|

|Vj |
. (20)

To measure seed set-based fairness for sensitive subgroup
Vi, Stoica et al. [137] employed the discrepancy between |A∩
Vi|/|Vi| and |Vi|/|V|. Here a smaller discrepancy indicates a
higher level of seed set-based fairness for Vi.

3.2 Individual Fairness

Compared with group fairness, Individual Fairness does
not consider any sensitive features. Instead, it focuses on
fairness at the individual (e.g., each node in graph data)
level [43]. Generally, individual fairness requires that similar
individuals should be treated similarly. Hence, individual
fairness is considered as a fairness notion at a finer granular-
ity than group fairness. Currently, there are only a few graph
mining algorithms that consider individual fairness. We
hereby present several existing individual fairness notions.

3.2.1 Node Pair Distance-Based Fairness
A widely adopted definition of individual fairness is that
the pair-wise node distances in the input space and output

space should satisfy Lipschitz Condition [43], [73]. Specifi-
cally, Lipschitz condition requires that the distance of any
node pairs in the output space should be smaller or equal
to their corresponding distance in the input space (usually
re-scaled by a scalar). Formally, given a pair of nodes vi and
vj , Lipschitz condition is given as

D(f(vi), f(vj)) ≤ L · d(vi, vj), (21)

where f(·) is the predictive model that gives the node level
output (e.g., node embeddings). D(·, ·) and d(·, ·) are the
distance metrics in the output and input space, respectively.
L is the Lipschitz constant that re-scales the input distance
between node vi and vj . In graph mining, Lipschitz condi-
tion formulates the guiding principle of individual fairness
(i.e., treating similar input nodes similarly) by restricting the
pair-wise output distance of nodes.

To measure individual fairness based on Lipschitz con-
dition, Zemel et al. [170] first proposed Consistency on
non-graph data. The intuition is to measure the average
distance of the output between each individual and its k-
nearest neighbors. Generally, for the algorithm outputs, a
larger average distance indicates a lower level of individual
fairness. In [170], consistency is defined as

1− 1

n · k

n∑
i=1

∣∣∣∣∣∣ŷi −
∑

j∈kNN(xi)

ŷj

∣∣∣∣∣∣ , (22)

where ŷi is the probabilistic classification output for node vi;
function kNN(·) takes the features of node vi as input and
returns the index set of its k-nearest neighbors in the feature
space. In graph mining algorithms, a similar formulation
of consistency is proposed by Lahoti et al. [88] based on
similarity matrix S. Generally, S describes the similarity
between nodes in the input space and can be given based
on attributes, graph topology, or knowledge from domain
experts [73], [88]. Here, consistency is formulated given as

1−
∑
i

∑
j |ŷi − ŷj | · Sij∑
i

∑
j Sij

(i 6= j) (23)

in binary node classification tasks. For any graph mining
algorithm, a large value of consistency indicates that it gives
similar outputs for similar nodes in the input space, i.e., the
algorithm performs well on individual fairness. Apart from
that, Kang et al. [73] proposed to use the similarity-weighted
output discrepancy between nodes to measure unfairness,
which is formulated as Tr(Ŷ>LSŶ). Here Ŷ is the output
matrix of the graph mining algorithm. Each row in Ŷ
represents the output vector for the corresponding node.
Tr(·) is the trace operator for any matrix. LS denotes the
Laplacian matrix of the similarity matrix S. Such a metric
measures the weighted sum of pair-wise node distance in
the output space, where the weighting score is the pair-wise
node similarity. Hence for any graph mining algorithms, a
smaller value of the similarity-weighted discrepancy typi-
cally implies a higher level of individual fairness.

3.2.2 Node Ranking-Based Fairness
Although Lipschitz condition (introduced in Section 3.2.1)
has been widely used as the individual fairness criterion,
there could be problematic in practical scenarios. Specifi-
cally, determining whether the outputs of two individuals
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are similar or not based on absolute input distances can
be inappropriate, as such criterion cannot calibrate across
different individuals [39]. Besides, Lipschitz condition im-
poses the comparison between the distances in two dif-
ferent spaces, which makes the Lipschitz constant hard
to be determined. To handle these drawbacks, Dong et
al. [39] proposed to fulfill individual fairness from a ranking
perspective. Specifically, a similarity matrix S is provided
to describe the pair-wise similarity for individuals in the
input space. Based on S, each individual has a ranking list
R1 that indicates the relative similarity ranking between
itself and others. Similarly, a corresponding ranking list
R2 can also be derived based on the pair-wise individual
similarity in the output space. From the perspective of node
ranking, individual fairness is regarded as fulfilled when
the two ranking lists (R1 and R2) are the same for each
individual [39]. Nevertheless, such a criterion is hard to be
satisfied. In practice, the average top-k similarity between
R1 and R2 over all individuals is adopted to measure
individual fairness, where NDCG@k [64] and ERR@k [29]
are two common ranking similarity metrics.

3.2.3 Individual Fairness in Graph Clustering
In clustering, the criterion of individual fairness is defined
in a different way compared with other tasks. Specifically,
for each node in a graph, if its neighbors are proportionally
distributed to each cluster, individual fairness is then ful-
filled [59]. Formally, under individual fairness, a clustering
algorithm satisfies fair clustering for node vi if

|{vj : Ai,j = 1 ∧ vj ∈ Ck}|
|Ck|

=
|{vj : Ai,j = 1}|

|V|
(24)

for all k ∈ {1, ...,K}. Here K represents the total number
of clusters, and Ck represents the set of nodes in cluster k.
The intuition here is that for each node, the ratio occupied
by its one-hop neighbors in each cluster should be the same
as the ratio occupied by its one-hop neighbors in the whole
population. We then introduce the metric to quantify fair
clustering. Specifically, ρi measures how disproportionately
the one-hop neighbors of node vi are assigned in different
clusters [59]. Formally, ρi is defined as

ρi = mink,l∈{1,...,K}
|Ck ∩Nvi |
|Cl ∩Nvi |

, (25)

where Nvi denotes the neighboring node set of vi. In [59],
the average ρi across all nodes in the graph is employed as
the metric of individual fairness in graph clustering.

3.3 Counterfactual Fairness
Different from the above fairness notions, Counterfactual
Fairness [85] defines fairness from the causal perspective
[118]. Specifically, counterfactual fairness is considered to
be achieved when the prediction results for each individ-
ual and his/her counterfactuals (“counterfactuals” in this
setting are different versions of the same individual when
his/her sensitive feature had been changed to different
values) are maintained to be the same. For example, the
algorithmic decision for an applicant’s loan application
should be the same regardless of his/her race. Counterfac-
tual fairness is defined based on Pearl’s structural causal

model [118], where a causal model describes the causal
relations between different variables. For any variables A
and B, the counterfactual “what would B have been if A
had been set to a specific value a” is denoted by BA←a.
Denote ŶS←s = f(XS←s, s) as the model prediction made
for the counterfactual when the sensitive feature S had been
set to a s. Counterfactual fairness is defined as

P (ŶS←s = y|X = x, S = s) = P (ŶS←s′ = y|X = x, S = s)
(26)

for all specific values y,x and s′ 6= s.
Recently, there has been a line of works [3], [104], [173]

that extend counterfactual fairness from traditional i.i.d.
data to graph data. Most of these works aim to learn
counterfactually fair node embeddings, and then make
predictions based on the embeddings. Agarwal et al. [3]
defined that a graph mining algorithm satisfies counterfac-
tual fairness if the corresponding embedding for each node
remains the same regardless of its sensitive feature(s) values
(other features and graph structure stay unchanged). To
step forward, Ma et al. [104] further considered more subtle
issues that may cause counterfactual unfairness in graphs:
(1) biases can be induced by each node’s neighboring nodes
in graphs; (2) biases can be induced by the causal relations
between the sensitive feature(s) to other features or graph
structure. Accordingly, this work defines graph counterfac-
tual fairness for node embedding learning as follows. Given
a graph encoder Φ(·) : Rn×d × Rn×n → Rn×d

′
, it satisfies

graph counterfactual fairness if we have

Φ(XS←s′ ,AS←s′)i = Φ(XS←s′′ ,AS←s′′)i, (27)

for any node vi, where n is the number of nodes, s′ and
s′′ are arbitrary sensitive feature values of all nodes, where
s′, s′′ ∈ {0, 1}n and s′ 6= s′′, Φ(·)i denotes the embedding of
node vi. Such a criterion requires the embeddings learned
from the original graph and counterfactuals (where the
sensitive feature values of any subset of the n nodes had
been changed) to be the same.

To measure counterfactual fairness on graphs, recent
works [3], [173] usually adopt Unfairness Score, which is the
percentage of nodes whose predicted label changes when
their sensitive feature values are changed (while other fea-
tures are fixed). Beyond that, Ma et al. [104] also proposed
to evaluate graph counterfactual fairness by measuring the
average prediction discrepancy between any two different
versions of counterfactual sensitive feature assignment on
all the n nodes. However, as there are too many combina-
tions for the sensitive feature values of all the nodes, and the
true causal model is hardly available in the real world, such
metric is commonly computed by approximation [104].

3.4 Degree-Related Fairness

Different from other traditional fairness notions, the study
on Degree-Related Fairness is fairly new in the graph mining
community. In networked data, if two nodes are connected,
there could be dependency between them. Such dependency
can be informative, and thus extracting the dependency
between connected nodes benefits various tasks in graph
mining. However, for low-degree nodes, their connections
only contribute limited information on the dependency
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between themselves and other nodes. In this regard, it
can be difficult for graph mining algorithms to effectively
capture critical information about these nodes, which often
leads to worse utility compared with high-degree nodes.
For example, the performance of GNNs in graph analytical
tasks (e.g., node classification) on high-degree nodes (e.g.,
a celebrity who has a lot of followers) often deviates from
that on low-degree nodes (e.g., an average Joe who has few
followers) [31], [75], [145]. Correspondingly, degree-related
fairness requires that nodes should bear similar utility (e.g.,
node classification accuracy) in the graph mining algorithms
regardless of their degrees. To measure degree-related fair-
ness, Kang et al. [75] leveraged the variance of average
cross-entropy loss w.r.t. node degrees, and such metric is
defined for node classification tasks.

3.5 Application-Specific Fairness
Apart from the application-agnostic fairness notions men-
tioned above, there are also other fairness notions particu-
larly designed for certain graph-based applications. Here,
we introduce application-specific fairness notions in recom-
mender systems and knowledge graphs.

3.5.1 Fairness Notions in Recommender Systems
User Fairness. User Fairness is an indispensable fairness
notion in recommender systems. Generally, user fairness
requires that the recommendation quality for different
users [52], [86], [93] should be similar. For example, in a
recommender system, we can divide users into two groups
according to their activity levels: active users and inactive
ones. Usually, inactive users tend to receive unsatisfying
recommendations compared with the active ones [52], [93],
as they reveal less information about their preferences.
Correspondingly, user fairness is usually measured by the
recommendation quality discrepancy between active and
inactive users [93]. Additionally, users can be divided into
different sensitive subgroups according to their sensitive
features. Yao et al. [167] proposed to measure the disadvan-
tage level of each sensitive subgroup with the average devi-
ation between the predicted item ratings and ground truth
ratings among group members. The average disadvantage
level across all subgroups is then employed to quantify the
user unfairness. Furthermore, user fairness has also been
studied in Group Recommendation. In general, the goal of
group recommendation is to provide recommendations that
comply with the preferences of most users in the group [6].
However, when the preferences of certain users (in a group)
are ignored by the recommender system, they would feel
that they are being unfairly treated. User fairness then
requires that the preferences of each user in a given group
should not be neglected by the recommendation algorithm.
To measure user fairness for a group of users, Malecek et
al. [105] leveraged the difference between the minimal and
maximal user-item relevance scores across all users. Similar
metrics are also adopted by other works such as [76], [97].
Popularity Fairness. Popularity Fairness, which requires that
popular items should not be over-emphasized compared
with other items, is another common fairness notion in rec-
ommender systems [33], [84], [157]. A well-known example
of popularity unfairness issue is the Filter Bubble [116] prob-
lem, which describes the scenarios that users are isolated

from less popular items or information [2], [101]. Typically,
the level of popularity fairness is measured by the average
recommendation rate of less popular instances (e.g., items,
users, and social media posts) [1], [17], [54]. For example, in
social platforms, Masrour et al. [101] extended the modular-
ity score [111] on graph data to measure popularity fairness
in friend recommendation. Formally, assume that a certain
partition divides users into different groups, and M(vi) and
M(vj) represent the group membership for user vi and vj ,
respectively. To measure how less popular user groups are
connected with others, the metric of popularity fairness is
formulated as

Qfairness =
1

2|E|
∑
i,j

(Ai,j −
didj
2|E|

)δ(M(vi),M(vj)), (28)

where δ(·, ·) is the Kronecker delta function [147]; di and dj
indicate the degree of node i and j; |E| is the total number
of edges in the graph data. Given a friend recommenda-
tion algorithm, a lower value of Qfairness indicates that the
algorithm yields more inter-group edges for the users in the
graph. This implies that some less popular groups are en-
couraged to connect more with other groups, which relieves
the filter bubble effect in friendship recommendation.
Provider Fairness. Provider Fairness, a.k.a. Producer Fairness,
requires that items from different providers should receive
the same exposure rate to the customers. Various strategies
have been proposed to measure provider fairness. Patro et
al. [117] set a minimum exposure guarantee for all providers
and used the number of unsatisfied providers to measure
provider fairness. Liu et al. [99] measured the provider di-
versity with the average number of providers appearing in
recommendations. Boratto et al. [16] adopted both the user-
item relevance difference and item exposure rate difference
between different providers as the corresponding metrics.
Marketing Fairness. Marketing Fairness is another fair-
ness notion in recommender systems proposed by Wan
et al. [154]. In their paper, they pointed out that online
shopping platform users are less likely to interact with items
whose marketing strategy is not consistent with their iden-
tity. For example, some gender-neutral items (e.g., armband)
could be marketed using images of males [57], [154]. There-
fore, even if both male and female users are potential cus-
tomers, female users tend to interact less with these items. In
this context, male and female users are regarded as identity-
consistent and identity-inconsistent users to the marketing
content, respectively. Recommender systems could then in-
herit such bias from data and yield biased recommendations
for female (i.e., identity-inconsistent) users in the future. To
measure marketing fairness, Wan et al. [154] proposed to cal-
culate the variance of recommendation errors for identity-
consistent and identity-inconsistent users, and the variance
discrepancy is adopted as the corresponding metric.

3.5.2 Fairness Notions in Knowledge Graphs
Social Fairness. Knowledge graph embeddings could en-
code historical Social Biases [8], [48] and one typical example
is the stereotype that bankers are males and nurses are
females [49]. Such biases have been observed in different
knowledge graph-based tasks including entity embedding
learning [48], [49] and word embedding learning based on
knowledge graphs [14], [26], [53]. In recent years, various
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Techniques for Improving 
Fairness in Graphs

Optimization with 
Regularization

Optimization with 
Constraint(s)

Rebalancing

Adversarial Learning

Edge Rewiring Orthogonal Projection

Fig. 3: A taxonomy of the commonly used techniques to
improve fairness in graph mining.

works have been proposed to measure such biases from
knowledge graph embeddings to fulfill social fairness. As
an example, given the embeddings of head entities rep-
resenting human and sensitive relations (e.g., gender and
race), Fisher et al. [48] employed the prediction accuracy on
tail entities (e.g., female/male when gender is the sensitive
relation) as a bias metric. Here a low accuracy indicates that
most sensitive information has been removed from the em-
beddings of these head entities. Meanwhile, social fairness
in profession prediction can also be quantitatively measured
through embedding perturbations [49]. Specifically, each
human entity embedding is first perturbed to be more likely
to have a certain value of the sensitive feature (e.g., gender,
race, and occupation). Such perturbed embedding is then
used to predict the profession corresponding to this human
entity. The probability difference of having a certain pro-
fession between the perturbed and unperturbed embedding
indicates the fairness level of the profession prediction. Here
a larger difference implies a higher level of unfairness.
Path Diversity Fairness. Another fairness notion in knowl-
edge graphs is Path Diversity Fairness [52], which is defined
on Meta-Paths. Generally, a meta-path connects different
object types (nodes) with relations (edges) on knowledge
graphs [140]. Path diversity fairness requires that the dis-
tributions of meta-paths (typically defined by counting the
number of paths for different meta-paths) should be simi-
lar across different sensitive subgroups [52]. Fu et al. [52]
adopted Simpson’s Index of Diversity (SID) [133] as the
metric for unfairness.
Popularity Fairness. Popularity Fairness is also a critical
fairness notion in knowledge graphs, and the popularity of
each entity node is defined as its degree in the knowledge
graph [8]. Generally, in knowledge graph completion tasks
(i.e., predicting relations between entities or predicting a
tail entity given head entity and a query relation), if the
prediction accuracy is uniformly distributed w.r.t. entity
node degrees, popularity fairness is then achieved.

4 TECHNIQUES FOR IMPROVING FAIRNESS

In this section, we introduce existing techniques for im-
proving fairness in graph mining algorithms. Generally,
these techniques can be divided into six categories, namely
optimization with regularization, optimization with con-
straint(s), rebalancing, adversarial learning, edge rewiring,
and orthogonal projection. We present the taxonomy of

Algorithm

Input graph

Downstream
tasks

Fairness
regularization

Objective of prediction
Fair

Unfair
Solution space

Fig. 4: The pipeline of optimization with regularization. The
fairness regularization encourages the optimization result
to stay in the area with a higher level of fairness (i.e., more
blue) of the solution space.

techniques in Fig. 3. For the techniques in each category,
we introduce how they promote application-agnostic and
application-specific (if applicable) fairness. The surveyed
literature is summarized in Table 2.

4.1 Optimization with Regularization

Optimization with regularization is a straightforward strat-
egy to relieve unfairness in graph mining algorithms, and
thus it is widely used in many existing works. The basic idea
of regularization is to add an extra term to the objective of
model utility to promote the fairness level of the algorithm
output. Formally, the total objective L can be given as

L = Lutility + λLfair, (29)

where Lutility and Lfair are the objectives of utility and
fairness, respectively; λ controls the effect of the fairness
regularization. We present a basic pipeline in Fig. 4.

4.1.1 Improving Group Fairness
Algorithm Output-Based Regularization. Generally, the
regularization enforcing statistical parity or equal oppor-
tunity is usually defined based on the algorithm output.
For example, when the sensitive feature is binary, Zeng et
al. [171] defined the regularization terms to enforce statisti-
cal parity and equal opportunity in node classification tasks.
Specifically, the regularization for statistical parity is

Lsp =
c∑
j=1


∑

vi∈V0
P (Ŷ = j | vi)

|V0|
−

∑
vi∈V1

P (Ŷ = j | vi)

|V1|


2

,

(30)

and the regularization to enforce equal opportunity is

Leo =
c∑
j=1


∑

vi∈Vj
0

P (Ŷ = j | vi)

|Vj0 |
−

∑
vi∈Vj

1

P (Ŷ = j | vi)

|Vj1 |


2

.

(31)

Here, V0 and V1 are the node sets for the two sensitive
subgroups (S = 0 and S = 1), respectively; Vj0 and Vj1
are the sets of nodes that are predicted as class j in the
two sensitive subgroups, respectively. Other recent works
also follow a similar idea to design their regularizations for
group fairness [50], [110], [156], [167].
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TABLE 2: Surveyed publications on graph mining algorithms categorized by the fairness notions and techniques.

Fairness Notions Techniques Publications Downstream Tasks
Application-Agnostic

Group

Optimization with Regularization [71] Recommendation
Optimization with Regularization [67] Node classification
Optimization with Regularization [173] Node classification
Optimization with Regularization [3] Node classification
Optimization with Regularization [24] Link prediction
Optimization with Regularization [167] Recommendation
Optimization with Regularization [88] Node classification
Optimization with Regularization [44] Node classification
Optimization with Regularization [110] Node classification
Optimization with Regularization [50] Node classification
Optimization with Regularization [175] Recommendation
Optimization with Regularization [52] Recommendation
Optimization with Regularization [156] Link prediction
Optimization with Regularization [83] Recommendation
Optimization with Regularization [87] Link prediction
Optimization with Regularization [21] Recommendation
Optimization with Constraint(s) [80] Graph clustering
Optimization with Constraint(s) [171] Node classification
Optimization with Constraint(s) [45] Influence maximization
Optimization with Constraint(s) [123] Influence maximization
Optimization with Constraint(s) [124] Influence maximization
Optimization with Constraint(s) [5] Influence maximization

Rebalancing [128] Link prediction
Rebalancing [25] Link prediction
Rebalancing [171] Node classification
Rebalancing [46] Recommendation
Rebalancing [122] Recommendation
Rebalancing [149] Node ranking
Rebalancing [77] Influence maximization, link prediction, and node classification
Rebalancing [146] Influence maximization
Rebalancing [138] Influence maximization
Rebalancing [148] Influence maximization
Rebalancing [82] Node classification
Rebalancing [37] Link prediction
Adversarial [18] Recommendation
Adversarial [38] Node classification
Adversarial [78] Influence Maximization
Adversarial [164] Recommendation
Adversarial [159] Recommendation
Adversarial [78] Influence maximization

Edge rewiring [91] Node classification
Edge rewiring [82] Node classification
Edge rewiring [65] Topology debiasing
Edge rewiring [40] Node classification
Edge rewiring [82] Node classification
Edge rewiring [136] Node classification

Orthogonal projection [114] Node classification and recommendation
Orthogonal projection [113] Node classification and recommendation
Orthogonal projection [171] Node classification

Individual

Optimization with Regularization [39] Node classification and link prediction
Optimization with Regularization [44] Node classification
Optimization with Regularization [88] Node classification
Optimization with Regularization [73] Node ranking, node classification and graph clustering
Optimization with Constraint(s) [59] Graph clustering

Edge rewiring [87] Link prediction

Degree-Related
Rebalancing [145] Node classification
Rebalancing [75] Node classification
Rebalancing [47] Influence maximization

Application-Specific

Popularity

Optimization with Regularization [72] Recommendation
Optimization with Regularization [157] Recommendation
Optimization with Regularization [1] Recommendation
Optimization with Regularization [33] Recommendation
Optimization with Regularization [174] Recommendation
Optimization with Regularization [54] Recommendation

Adversarial [84] Recommendation
Edge rewiring + Adversarial [101] Link prediction

Provider
Optimization with Regularization [99] Recommendation

Rebalancing [16] Recommendation
Rebalancing [117] Recommendation

User

Optimization with Regularization [97] Recommendation
Optimization with Regularization [93] Recommendation

Rebalancing [76] Recommendation
Rebalancing [105] Recommendation

Marketing Optimization with Regularization [154] Recommendation

Social
Optimization with Regularization [49] Knowledge graph embedding learning

Adversarial [48] Triple prediction
Adversarial [8] Link prediction
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Network Topology-Based Regularization. Regularization
based on the network topology is proved to be effective in
promoting group fairness. For instance, feature propagation
is a common operation to model the dependency between
neighboring nodes in graph mining [67], [131]. However,
if the graph topology is biased, the propagated features
also tend to be biased [40]. To tackle such problem, Jiang et
al. [67] achieved a less biased feature propagation through
a fairness-aware regularization. Specifically, given two sen-
sitive subgroups, the regularization is formally given as

Lfair = ‖∆ssoftmax(X̂)‖1. (32)

Here softmax(·) is the softmax function; X̂ ∈ Rn×d is the
node feature matrix after propagation; ∆s ∈ {1,−1}1×n
is the element-wise indicator for the sensitive subgroup
membership, which is formulated as

∆s =
1=1(s)

‖1=1(s)‖1
− 1=0(s)

‖1=0(s)‖1
, (33)

where s ∈ {0, 1}n is the sensitive feature vector for all
nodes; 1=0(·) and 1=1(·) is the element-wise indicator
function for 0 and 1 entries, respectively. As such, ∆s is
a vector where entries corresponding to members in the
two sensitive subgroups are 1 and −1 normalized by their
subgroup size, respectively. This regularization encourages
the average feature values after propagation to be similar
between the two subgroups at each dimension. Addition-
ally, regularization based on the network topology is also
widely employed in link prediction. As an example, Buyl
et al. [24] proposed a fairness regularization term for the
link prediction task. They first defined a set of probabilistic
graph models that are fair w.r.t. demographic parity and
equal opportunity. Then they measured the KL-divergence
between the predicted edge distribution (by the link pre-
diction model) and the edge distribution determined by its
closest graph model. Such KL-divergence is employed as
the regularization term, and minimizing it encourages the
predicted edge distribution to be close to a pre-defined fair
edge distribution.
Node Embedding-Based Regularization. Regularization
based on node embeddings is another common approach
to improve group fairness. For example, Lahoti et al. [88]
utilized the total Euclidean distance of all embedding pairs
spanning across different sensitive subgroups as a regu-
larization term, which encourages the node embeddings
in different sensitive subgroups to be similar. Apart from
that, in binary sensitive feature scenarios, the distribution
distance of node embeddings between the two sensitive
subgroups is also an effective regularization term that helps
to fulfill group fairness [44], [110].

4.1.2 Improving Individual Fairness
Algorithm Output-Based Regularization. Regularization
can also be adopted to improve individual fairness for
graph mining algorithms. A basic desideratum here is to
employ regularization terms to reduce the output difference
between nodes that are similar, which is consistent with
the intuition “to treat similar individuals similarly”. For
example, Kang et al. [73] leveraged an oracle similarity
matrix S to indicate the similarity between individuals,

and the Laplacian matrix LS for S can then be derived.
The total variation of the output matrix Ŷ w.r.t. S is
used as the regularization term, which can be formulated
as Tr(Ŷ>LSŶ). With such a regularization, the algorithm
yields similar outputs for similar nodes, which aligns with
the definition of individual fairness in Section 3.2.1. Lahoti et
al. [88] followed a similar idea. In their work, the similarity
between nodes is derived from both node features and
human knowledge. As another example, Dong et al. [39]
formulated a regularization term based on node rankings
to promote individual fairness in GNNs. Specifically, for
each individual, a ranking list is first derived based on the
input similarity scores between itself and other individuals.
Similarly, another ranking list can also be derived based
on the GNN output similarity between this individual and
others. Such a regularization encourages the two ranking
lists for each individual to be as similar as possible, which
promotes the node ranking-based fairness.
Node Embedding-Based Regularization. Promoting the
level of group fairness based on node embedding distribu-
tions also helps to impose individual fairness [43], [44]. Fan
et al. [44] empirically proved that the Wasserstein distance
between node embedding distributions across different sen-
sitive subgroups can be utilized as an effective regulariza-
tion to improve fairness at both group and individual level
in node classification tasks.

4.1.3 Improving Counterfactual Fairness
The intuition of counterfactual fairness on graphs is that the
prediction of each individual (node) should be the same on
the factual data and counterfactuals (in counterfactuals, the
values of nodes’ sensitive feature have been changed). Based
on such intuition, many studies have been devoted in recent
years. Among them, Agarwal et al. proposed NIFTY [3],
which generates the graph counterfactuals by flipping the
sensitive feature values for all nodes while keeping every-
thing else unchanged. A regularization in the loss function is
then introduced to encourage the node embeddings learned
from the factual graph and its counterfactual to be the same.
At a high level, the regularization for counterfactual fairness
can be expressed as E[D(zi, z

′
i)], where zi and z′i are em-

beddings of node vi learned based on the factual graph and
its counterfactual, respectively; D(·, ·) is a distance metric.
A following work [104] proposed a similar regularization
term. The main difference is that more causal relations are
considered to generate graph counterfactuals.

4.1.4 Improving Fairness in Recommender Systems
In recommender systems, regularization is a commonly
used technique to fulfill popularity fairness. As an example,
in online shopping platforms, the number of feedback ac-
tions an item receives generally represents how popular this
item is. Based on such intuition, Zhu et al. [174] proposed to
formulate a regularization as

Lfair = CorrP(r̂+,p+). (34)

Here r̂+ denotes the vector of predicted relevance scores
for positive user-item pairs; p+ represents the vector of the
feedback number received by the corresponding items in
user-item pairs; CorrP(·, ·) is the Pearson correlation func-
tion. By regularizing the correlation between r̂+ and p+,
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the effect that popular items tend to receive higher relevance
scores can be relieved. Various other works also employed
regularization terms based on the popularity of items to
achieve popularity fairness [1], [33], [54], [72], [157].

Regularization is also a widely used technique to pro-
mote user fairness in recommender systems. For example,
Lin et al. [97] pointed out that all users should receive
recommendations with equal quality. Correspondingly, the
difference of recommendation quality (measured by the
relevance scores of recommended items to users) between
every two individuals is summed up and formulated as the
regularization term. Besides, Li et al. [93] defined a regu-
larization term by considering the recommendation quality
discrepancy between active users and inactive ones.

Furthermore, regularization can also be adopted to pro-
mote other types of application-specific fairness. For ex-
ample, to achieve provider fairness, the provider diversity
of recommended items is often employed as a regulariza-
tion [16], [99]. To fulfill marketing fairness, the variances of
errors between recommendations to identity-consistent and
identity-inconsistent users (see definitions in Section 3.5.1)
are first computed, and their discrepancy is then adopted as
a regularization [154].

4.1.5 Improving Fairness in Knowledge Graphs

Regularization is usually formulated in knowledge graph
embedding learning to fulfill fairness for human entities. For
example, Fisher [49] proposed to relieve social bias through
regularization. Specifically, a prediction on the sensitive
feature value is made for each human entity based on
the learned embeddings. The KL-divergence between the
predicted value distribution and uniform distribution over
all possible sensitive feature values is then defined as the
regularization term. Generally, a smaller KL-divergence in-
dicates that the embeddings provide less information about
the sensitive feature, which implies a higher level of fairness.

4.2 Optimization with Constraint(s)

Optimization with constraint(s) serves as a critical technique
to fulfill fairness in graph mining. Generally, such fairness
constraint(s) reduce the feasible set size of the correspond-
ing optimization problem to exclude unfair solutions. We
present a conceptual formulation of optimization problems
with fairness constraint(s) as:

min Lutility,

subject to certain fairness constraint(s) (35)

We present a pipeline of optimization with constraint(s)
in Fig. 5. Different from regularization, optimization with
constraint(s) requires that the solution should only be in the
fair area (i.e., the blue area) of the solution space.

4.2.1 Improving Group Fairness

Optimization with constraint(s) is widely leveraged in in-
fluence maximization to ensure the influence propagates to
different sensitive subgroups in a fair manner [5], [45], [124].

Model

Input graph

Downstream
tasks

Fairness
regularization

Objective of prediction Input graph

AlgorithmInput graph

Downstream
tasks

Discriminator

Objective of prediction

Predict S

Generator

Indistinguishable

Fair
Unfair
Model space

Model Downstream
tasks

Objective of prediction
Fair

Unfair
Model space

Fairness
constraint(s)

Embeddings

Fig. 5: The pipeline of optimization with constraint(s). The
formulated hard constraint for fairness restricts the solution
to be in the fair area (i.e., blue area) of the solution space.

Generally, the fairness-constrained influence maximization
problem is formulated as

max
H∑
i=1

ui(A)︸ ︷︷ ︸
Expected number of influenced nodes

subject to |A| ≤ K︸ ︷︷ ︸
Bound of seed set size

and M(A, u1, ..., uH ,V1, ...,VH) ≤ βunfair︸ ︷︷ ︸
Fairness constraint

(36)

Here ui(A) is the utility (i.e., the percentage of influenced
nodes) of the i-th sensitive subgroup based on the seed node
set A; K represents the budget for seed set size; function M
outputs the unfairness level of the influence maximization
algorithm according to certain unfairness metric; βunfair de-
notes the maximum acceptable threshold for the influence
maximization unfairness. It is worth noting that the con-
strained optimization problem given by Eq. (36) has been
proved to be an NP-hard problem [5]. Hence the optimiza-
tion problem introduced above is usually transformed into
its surrogate problem and solved in a heuristic manner.

Aside from influence maximization, optimization with
constraint(s) is also used to fulfill fairness in other graph
mining scenarios such as graph clustering. As an example,
Matthäus et al. [80] defined a fairness-aware constraint for
spectral clustering to ensure that each sensitive subgroup
is proportionally represented by each cluster. Formally, as-
sume nodes in the input graph are divided into H sensitive
subgroups, and Vi is the node set of the i-th subgroup. K
and Ck are the cluster number and the node set of the k-th
cluster, respectively. The constraint is given as

∀i ∈ {1, ...,H} and ∀k ∈{1, ...,K}, |Vi ∩ Ck|
|Ck|

=
|Vi|
|V|

. (37)

4.2.2 Improving Individual Fairness

Optimization with constraint(s) is also a popular tech-
nique to fulfill individual fairness. For example, Gupta
et al. [59] proposed to achieve individual fairness in
graph clustering via optimization constraints. As intro-
duced in Section 3.2.3, individual fairness in graph clus-
tering requires that for each node in the graph, its neigh-
bors should be proportionally assigned to different clus-
ters. To this end, the corresponding constraint is formu-
lated as ∀k ∈ {1, ...,K}, 1

|Ck| |{vj : Aij = 1 ∧ vj ∈ Ck}| =
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1
|V| |{vj : Aij = 1}| for node vi, where 1 ≤ i ≤ n. To be
more concise, such constraint can be further formulated as

A(I− 11>/n)H = 0, (38)

where 1 ∈ {1}n×1 and 0 ∈ {0}n×K . For k ∈ {1, ...,K},
matrix H is defined as

Hi,k =

{
1/
√
|Ck|, if vi ∈ Ck,

0, otherwise.
(39)

4.3 Rebalancing
Rebalancing aims to reduce the distribution difference of
certain properties (e.g., the appearance rate of a node in
random walks and frequency of recommendations of an
item) between advantaged and disadvantaged nodes. We
present a basic pipeline in Fig. 6.

4.3.1 Improving Group Fairness
Network Topology-Based Rebalancing. A number of
works adopt the rebalancing strategy to promote group
fairness based on the network topology. As an example,
Rahman et al. [122] proposed Fairwalk to achieve fair node
embedding learning, where the node appearance frequency
in random walks (generated by node2vec [56]) is balanced
between minority and majority groups. However, when a
walk is choosing its next step in FairWalk, only one-hop
neighbors of the node at the current step are considered.
Such a strategy lacks long-term rebalancing and thus could
fail when all nodes up to several hops away from the current
step have the same membership (i.e., the current step has
a homogeneous surrounding). To consider long-term rebal-
ancing, Khajehnejad et al. [77] proposed CrossWalk, which
extends the rebalancing range to the whole walk by assign-
ing larger transition probabilities to nodes that are closer
to the sensitive groups’ topological peripheries. Compared
with FairWalk, CrossWalk further promotes the diversity
of node membership by encouraging walks to avoid being
stuck in homogeneous surroundings. On heterogeneous
graphs, topology-based rebalancing is also adopted for fair
embedding learning. For example, during meta-path gen-
eration, the probabilities of selecting nodes from different
sensitive subgroups are rebalanced in [171]. Specifically,
rebalancing is achieved via selecting nodes in disadvan-
taged subgroups with a higher probability. Such a strategy
enforces a fair appearance rate for nodes from different
subgroups in the generated meta-paths. Another example
is the fairness-aware PageRank [149]. Generally, the node
importance vector given by PageRank [19] is derived based
on the transition matrix and the jump vector. However, they
could be biased due to the imbalanced size of different

sensitive subgroups. By rebalancing the transition (jumping)
probabilities across different sensitive subgroups, group
fairness can be achieved in the fairness-aware PageRank
algorithm. Furthermore, in link prediction tasks, Saxena et
al. [128] rebalanced the number of intra-group and inter-
group links, which also effectively enforces group fairness.
Node Sampling/Generation-Based Rebalancing. Rebalanc-
ing can also be achieved via node sampling or node gener-
ation. Generally, both approaches can rebalance the node
number between different sensitive subgroups. For node
sampling, Kose et al. [82] pointed out that if a GNN model is
trained on a sampled subgraph with balanced populations
from different sensitive subgroups, its predictions tend to be
with a higher level of group fairness. For node generation,
Current et al. [37] proposed to generate pseudo nodes and
reweight edges in the input graph of GNNs to encourage
balanced information propagation in different sensitive sub-
groups. Such modifications on the input graph are jointly
optimized with the GNN model parameters.
Information Flow-Based Rebalancing. Information flow-
based rebalancing techniques are commonly adopted to
achieve fair influence maximization. For example, Stoica
et al. [138] proposed Parity Seeding, which is achieved by
setting different seed number budgets for different sensitive
subgroups. In this way, the flow of influence originating
from seed nodes is rebalanced across different subgroups.
Besides, Tsang et al. [148] rebalanced the selection of seed
nodes to improve the lowest ratio of influenced nodes
among all sensitive subgroups.

4.3.2 Improving Degree-Related Fairness
Degree-related fairness can also be achieved via rebalancing
techniques. For example, in the message-passing process of
traditional GNNs, nodes with low degrees usually benefit
less (compared with nodes with high degrees) from the in-
formation propagation due to their sparse connections [75].
Tang et al. [145] proposed to rebalance the labeled nodes
across the graph. Specifically, pseudo labels are generated
to improve the probability of labeled nodes appearing in
the neighborhood of low-degree nodes. In this way, more
supervision information can be accessed by those low-
degree nodes through the given network topology. Such
a rebalancing strategy has been proved to be effective in
improving the node classification accuracy for low-degree
nodes. Besides, Kang et al. [75] pointed out that a critical
source of degree-related unfairness in GNNs is the gradient
of learnable weight parameters w.r.t. the objective function.
In particular, it has been proved that high-degree nodes tend
to exert a more significant influence on the gradient of the
learnable weight matrix, which is the reason why GNNs
favor high-degree nodes. To handle this problem, a doubly
stochastic adjacency matrix (the rows and columns sum up
to 1) of the GNN input network is defined and employed as
GNN input. Such a strategy rebalances the influence of each
node to the learnable weight matrix during optimization,
which helps to enforce degree-related fairness.

Additionally, in information maximization, Fish et
al. [47] designed a Social Welfare Function to measure the
difficulty for the low-degree nodes to get access to the
information originating from the seed nodes. Based on the
welfare function, the probability that the seed nodes reach
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Fig. 7: The pipeline of adversarial learning-based ap-
proaches. The information of sensitive feature(s) is removed
from the embeddings if the discriminator cannot accurately
predict sensitive feature values.

out and influence those low-degree nodes is promoted. Such
a strategy helps to enable nodes with high and low degrees
to receive a more balanced amount of influence.

4.3.3 Improving Fairness in Recommender Systems
Upsampling is a common rebalancing approach in recom-
mender systems. For example, in terms of provider fairness,
Boratto et al. [16] proposed to upsample interactions be-
tween users and items from minority providers. A similar
rebalancing idea is also adopted by Gourab et al. [117],
where copies of products are made to improve the exposure
of items from minority providers.

Rebalancing can also be leveraged to improve user fair-
ness. For example, in group recommendation, items are
recommended to a group of users. To ensure that the
preference of each user is proportionally represented by
the recommended items, Malecek et al. [105] proposed
to enforce a cap on the recommendation relevance score
summation for each user to rebalance the recommendation
quality. In this way, the phenomenon that some users in a
group may be under-represented and receive unsatisfying
recommendation results can be eliminated. Similar rebal-
ancing approaches have also been applied to rebalance item
ratings given by users from different sensitive subgroups to
achieve a higher level of user fairness [46].

4.4 Adversarial Learning

The adversarial learning-based framework includes a gen-
erator and a discriminator. The generator outputs node
embeddings or probabilistic predictions, while the discrim-
inator aims to predict the sensitive feature values based on
the generator output. The basic rationale here is to play a
min-max game between the generator and discriminator.
When the discriminator fails to predict sensitive feature
values, the generator output is regarded as decoupled from
the sensitive feature(s) [18]. We present a basic pipeline of
adversarial learning-based approaches in Fig. 7.

4.4.1 Improving Group Fairness
Adversarial learning is a popular strategy for learning node
embeddings that are fair in terms of group fairness. For
example, Bose et al. [18] leveraged a discriminator to predict
the value of sensitive feature(s) based on learned node em-
beddings, while the generator aims to generate embeddings
that are indistinguishable w.r.t. sensitive feature(s). This
idea is also followed by many other works [38], [98], [159],
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Algorithm

Fig. 8: The pipeline of edge rewiring-based approaches.
Edges in the input graph data is rewired (i.e., removed from
linked node pairs and added to non-linked node pairs) to
obtain fair algorithm output in downstream tasks.

[164] to filter out the information of sensitive features from
the learned node embeddings. In [78], Khajehnejad et al.
proposed to learn node embeddings based on adversarial
learning to promote group fairness for influence maximiza-
tion. With the learned embeddings, seed nodes are selected
based on embedding clustering: the nodes nearest to the
centroid of each cluster are selected. Considering that the
information of sensitive features has been removed from the
learned embeddings, the seed selection is regarded as fair.

4.4.2 Improving Fairness in Knowledge Graphs
Adversarial learning can also be adopted to improve social
fairness in knowledge graph embedding learning. Arduini
et al. [8] proposed to leverage a sensitive information filter to
remove social bias from the embeddings of human entities.
In their paper, the sensitive information filter also plays a
min-max game with a discriminator, such that the entity
embeddings are decoupled from the sensitive feature(s).

4.5 Edge Rewiring
Biases exhibited in the node embeddings and algorithm
predictions could also be attributed to the biased network
topology. In this regard, modifying the graph topology
through edge rewiring is a common debiasing strategy. We
present a basic pipeline in Fig. 8.

4.5.1 Improving Group Fairness
Information Flow-Based Rewiring. In most graph min-
ing algorithms, there are information flows from nodes to
nodes [32], [79], [152], [165]. An intuitive idea to mitigate
group unfairness is to modify the graph topology to make
such information flows as fair as possible. For instance, Jalali
et al. [65] proposed Information Unfairness Score based on
the information flows. Specifically, given several groups of
nodes, the information unfairness score depicts the largest
distribution difference of the probabilistic accessibility be-
tween two node groups. To obtain a fair graph topol-
ogy, edges are rewired in a greedy manner to maximally
reduce the information unfairness score. Additionally, in
GNNs, the information aggregation operation is found to
introduce bias from the biased network topology to the
learned node embeddings [40], [67], [81], [82], [91]. Dong
et al. [40] proposed to perform edge rewiring for fair node
embedding learning. Specifically, the Wasserstein distance
between the node embedding distributions from two sen-
sitive subgroups is minimized by learning a less biased
(weighted) graph adjacency matrix. The learned weights in
the adjacency matrix are converted into binary values ac-
cording to a pre-assigned threshold for edge rewiring. Simi-
lar edge rewiring ideas are also adopted by other works. For
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example, Li et al. [91] proposed to optimize the adjacency
matrix to minimize the expected probability difference of
being connected between inter- and intra-group node pairs
in link prediction tasks.
Edge Sampling-Based Rewiring. Edges can also be sam-
pled in a probabilistic way to improve group fairness. For
example, Spinelli et al. [136] pointed out that nodes within
the same sensitive subgroup tend to be linked together on
homogeneous graphs. The dominance of these intra-group
edges could lead to bias in embedding learning. To tackle
this issue, Spinelli et al. proposed a debiasing approach
named FairDrop, where more intra-group edges than inter-
group edges are removed according to a probabilistic edge-
masking matrix. Similar probabilistic edge removing ap-
proaches are also adopted by other works such as [82].

4.5.2 Improving Individual Fairness
In terms of individual fairness, the edge rewiring strategy
encourages similar individuals to share similar topolog-
ical characteristics. For example, algorithms based on a
biased network topology tend to yield biased results in
downstream tasks [40], [87]. To tackle this issue, an edge
rewiring strategy is introduced by Laclau et al. [87] to
achieve a fair topology for downstream tasks. Specifically,
a matrix S is first given to indicate the pair-wise node sim-
ilarity. To optimize the network topology, an optimization
problem is then formulated to encourage similar nodes to
have highly overlapped neighboring node sets after edge
rewiring. Downstream tasks are proved to benefit from the
rewired network topology in terms of individual fairness.

4.5.3 Improving Fairness in Recommender Systems
In recommender systems, edge rewiring can be leveraged to
tackle the well-known filter bubble problem. For example,
Masrour et al. [101] proposed an extended modularity score
(as presented in Section 3.5.1) of the graph as a popularity
fairness indicator. Based on the obtained link prediction
results, a proportion of links are rewired in a greedy manner
to promote the modularity score, which helps to achieve
popularity fairness.

4.6 Orthogonal Projection
To decorrelate the learned embeddings from the sensitive
feature(s), making the learned node embeddings orthogonal
to the corresponding sensitive feature(s) is an effective ap-
proach. This is usually achieved through projecting the node
embeddings onto a hyperplane orthogonal to the direction
of the sensitive features. We present a basic pipeline in Fig. 9.
Compared with other approaches, it provides a theoretical
guarantee that the node embeddings are uncorrelated with
the sensitive feature(s) [114].

4.6.1 Improving Group Fairness
Orthogonal projection is an effective approach to improve
group fairness for graph embeddings. In [171], Zeng et al.
defined Bias Direction. Based on such, the node embeddings
are projected onto a hyperplane orthogonal to the bias
direction. Specifically, for the i-th sensitive subgroup, we
obtain an averaged unit node embedding as

ziavg =
z1 + z2 + ...+ z|Vi|
‖z1 + z2 + ...+ z|Vi|‖2

, (40)

where for a binary sensitive feature, i ∈ {1, 2}; zj (j ∈
{1, 2, ..., |Vi|}) denotes the learned embedding of node vj .
The unit vector in the bias direction is defined as

zbias =
z1avg − z2avg

‖z1avg − z2avg‖2
. (41)

Generally, if all node embeddings are projected onto a
hyperplane that is orthogonal to zbias, then the component
of the projected node embeddings in the direction of zbias
is zero, i.e., the sensitive information is decorrelated from
the learned node embeddings. Correspondingly, for node
vj , the projected embedding is formulated as

z′j = zj− < zj , zbias > zbias, (42)

where z′j is the projected embedding for node vj , and
< ·, · > is the inner product operator. Similarly, Palowitch
et al. [114] proposed to learn topological embeddings by
projecting the embedding onto a hyperplane orthogonal to
the hyperplane of node features. This offers the theoretical
guarantee that there will be no correlation between the po-
tentially biased node features and topological embeddings.
However, it is worth noting that orthogonal projection only
guarantees that the embeddings and sensitive feature(s) are
uncorrelated, while how to exclude non-linear dependency
between them remains under-explored.

5 BENCHMARK DATASETS

We summarize the datasets used by the surveyed litera-
ture in Table 3. In general, we group these datasets into
four categories w.r.t. the type of networks, including so-
cial networks (C1), recommendation-based networks (C2),
academic networks (C3), and other types of networks (C4).
For each type of network, we present the fairness notions
that can be studied on these datasets and the basic dataset
statistics, including the number of nodes, the number of
edges, the number of node features, the semantic mean-
ing of sensitive feature(s), and the number of sensitive
subgroups. Furthermore, we also list the papers that used
these datasets for fairness studies in graph mining. We
collect these open-source datasets in https://github.com/
yushundong/Graph-Mining-Fairness-Data.

6 RESEARCH CHALLENGES

Here we introduce the limitations of current research, press-
ing challenges, and open questions for future advances.
Formulating Fairness Notions. Discrimination could exist
in diverse forms in graph mining. Correspondingly, differ-
ent types of fairness notions should be formulated towards
a comprehensive understanding of bias and discrimination

https://github.com/yushundong/Graph-Mining-Fairness-Data
https://github.com/yushundong/Graph-Mining-Fairness-Data
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TABLE 3: Collection of benchmark datasets. “CI, C2, C3, C4” refer to social networks, recommendation-based networks,
academic networks, and other types of networks, respectively. Different versions exist for datasets marked with “∗”, and
only the statistics corresponding to the most representative version are presented.

Dataset Fairness Goal(s) # nodes # edges # features S (|S|) Works Citation

C1

Facebook∗ [63] group, individual 1,034 26,749 224 gender (2) [5], [24], [37], [39], [44], [73], [78], [80]
[83], [87], [101], [128], [146], [171]

Pokec∗ [142] group 1,632,803 30,622,564 59 region (2), gender (2) [38], [40], [50], [67], [82], [110]
Twitter∗ [107] group 81,306 1,768,149 1,364 political opinion (2) [77], [83], [149]
Lastfm [27] group, provider 49,900 518,647 - gender (2), age (3) [117], [159], [164]
Oklahoma97 [126] group 3,111 73,230 8 gender (2) [91]
UNC28 [126] group 4,018 65,287 8 gender (2) [91]
Google+ [107] popularity 4,938 547,923 5 - [101]
Epinion [144] popularity 8,806 157,887 - - [1], [174]
Filmtrust [58] provider 3,579 35,494 - - [99]
Ciao [144] popularity 7,317 85,205 - - [174]

C2

Amazon∗ [90] group, marketing, social 334,863 925,872 - product category (4) [52], [83], [93], [154], [175]
Yelp∗ [175] group, social 12,683 211,721 14 food genre (4) [175]

MovieLens-100K [62] group, popularity 2,625 100,000 12 gender (2), age (7), [24], [25], [54], [114]occupation (21)

MovieLens-1M [62]
group, individual,

10,000 1,000,000 11 gender (2), age (7), [1], [18], [21], [33], [46], [54]
popularity, provider, occupation (21) [71], [76], [97], [99], [105]
social, user [159], [164], [171], [174], [175]

MovieLens-20M [62] popularity 165,000 20,000,000 6 - [84], [157]

C3

Citeseer [130] group, degree-related 3,327 4,732 3,703 topic (6) [37], [82], [91], [136], [145]
Cora [130] group, degree-related 2,708 5,429 1,433 topic (7) [37], [82], [91], [136], [145]
Pubmed [130] group, degree-related 19,717 44,338 500 topic (3) [37], [82], [91], [136], [145]

DBLP∗ [143] group, individual 3,980 6,965 - continent (5), [25], [65], [87], [136], [138], [149]gender (2)

C4

German [9] group, couterfactual 1,000 21,742 27 gender (2) [3], [40], [173]

NBA [38] group 403 10,621 96 country (2) [38], [67]

Recividism [69] group, individual 18,876 311,870 18 race (2) [3], [40], [44], [104], [173]couterfactual

Credit [168] group, couterfactual 30,000 1,421,858 13 age (2) [3], [40], [104], [173]

in different real-world applications [23], [28], [134], [158],
[169]. Although we have surveyed many fairness notions
for graph mining, we need to admit that by no means are
they complete, as other types of biases could also exist, de-
pending on the needs of different real-world scenarios [160].
On the other hand, the definitions of different fairness
notions on graphs could even be in conflict with each
other [13], [160]. Therefore, designing a new fairness notion
or choosing a set of existing non-conflicting fairness notions
for particular graph mining algorithms and downstream
applications remains an open question.

Fulfilling Multiple Types of Fairness. It should be noted
that any type of bias is undesired in real-world applica-
tions. In this regard, there is an urgent need to promote
multiple types of fairness at the same time. For example,
group fairness and individual fairness can be promoted at
the same time under certain scenarios [44], [88]. However,
promoting multiple types of fairness at the same time is a
non-trivial problem, as promoting one type of fairness may
degrade several other types of fairness [13], [22]. Such a
phenomenon can be more pronounced on graphs, which is
resulted from the dependency between neighboring nodes.
For example, in a social network, individuals with the same
gender are more densely connected. In this case, individual
fairness enforces the nodes in the same gender subgroup
to be similar (e.g., similar embeddings). However, such a
goal may lead to a larger discrepancy between gender sub-
groups, which adversely affects the level of group fairness.
Therefore, properly addressing multiple unfairness issues in
graph mining simultaneously is a pressing problem.

Balancing Model Utility and Algorithmic Fairness. For

algorithms with fairness considerations, the utility such as
prediction accuracy is usually sacrificed [30], [115], [161].
Such a trade-off between utility and fairness has been stud-
ied on i.i.d. data in recent years. To achieve a satisfying
trade-off, a common strategy is to ensure the algorithm bear-
ing Pareto optimality [106], [132], i.e., a state where either
utility or fairness cannot be promoted without harming the
other one. Graph mining algorithms also have the issue of
utility-fairness trade-off [38], [39], [55]. For example, when
the fairness-related regularization is added to the objective
function of a specific graph analytical task, the solution of
the regularized optimization problem often deviates from
the solution that brings the best utility in the unregular-
ized optimization problem. Additionally, in an adversarial
learning-based framework, when the generator successfully
fools the discriminator, some useful information may also
be wiped out from the embeddings or predictions given by
the generator. This could also degrade the model utility per-
formance in downstream tasks. Hence it is critical to study
how to achieve a trade-off between utility and fairness.

Explaining How Unfairness Arises. Although various de-
biasing strategies have been proposed to debias graph
mining algorithms, systematically understanding how such
unfairness arises in the underlying algorithm is also crucial.
However, this problem can be challenging. A reason is
that the exhibited unfairness is usually coupled with both
the input graph and specific mechanisms in graph mining
algorithms. For example, due to the message-passing mech-
anism in GNNs, the unfairness exhibited in the learned node
embeddings can be attributed to the biased input graph
topology [40]. Systematically explaining how unfairness
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arises in various graph mining algorithms remains a critical
issue to be addressed.
Enhancing Robustness of Algorithms on Fairness. In
graph mining, enhancing the robustness of graph mining al-
gorithms w.r.t. fairness is another urgent need. For instance,
in learning-based algorithms, human annotators could pro-
vide biased supervision information for model training [20].
Besides, the algorithms may also be manipulated by ma-
licious attackers to exhibit discrimination against a certain
group of people [7], [135]. In both cases, the fairness level
of the algorithm predictions can be dramatically lowered.
Despite the significance of enhancing the robustness of algo-
rithmic fairness, most existing studies are overwhelmingly
devoted to i.i.d. data [108], [135], and cannot be directly
grafted to the graph-structured data. In this regard, how
to promote the robustness of the fairness aspect of graph
mining algorithms deserves further investigation.

7 CONCLUSION

Graph mining has achieved remarkable success in a myriad
of high-impact real-world applications. Nevertheless, due
to the lack of fairness considerations, there has been an in-
creasing societal concern that these algorithms may exhibit
discrimination when they are exploited to make predictions
and decisions. Over the years, many efforts have been made
to define, measure, and promote fairness in graph mining.
In this survey, we propose a novel taxonomy of fairness
notions in graph mining research and systematically re-
view existing fairness notions from different perspectives.
Besides, we categorize and introduce existing techniques
that promote fairness in graph mining. Furthermore, rich
benchmark graph datasets are collected to facilitate future
research advances in this area. Finally, existing challenges
and open questions areas are also discussed.
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[81] Öykü Deniz Köse and Yanning Shen. Fairness-aware node
representation learning. arXiv preprint arXiv:2106.05391, 2021.
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