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Fairness in Graph Mining: A Survey

Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li

P

raph mining algorithms have been playing a significant role in myriad fields over the years. However, despite their
performance on various graph analytical tasks, most of these algorithms lack fafness considerations. As a consequence,
B lead to discrimination towards certain when exploited in h Recently, algorithmic
B4 been extensively studied in graph-based applications. In contrast to algorithmic faimess on independent and identically
H (i.i.d.) data, fairess in graph mining has exclusive backgrounds, taxonomies, and fuffilling techniques. In this survey, we
[comprehensive and up-to-date introduction of existing literature under the context of fair graph mining. Specifically, we
novel taxonomy of faifness notions on graphs, which sheds light on their connections and differences. We further present an
summary of existing techniques that promote fairmess in graph mining. Finally, we discuss current research challenges and
Jstions, aiming at encouraging cross-breeding ideas and further advances.

‘ms—Algorithmic Fairness, Graph Mining, Debiasing

1 INTRODUCTION

Graph-structured data is pervasive in diverse real-world
applications, e.g,, E-commerce [102], [121], health care [37],
[53], traffic forecasting [72], [100], and drug discovery [15],
[172]. In recent years, a number of graph mining algorithms
have been proposed to gain a deeper understanding of such
data. These algorithms have shown promising performance
on graph analytical tasks such as node classification [59],
[86], [161] and link prediction [4] [103], [109], conmbuhng
to great advances in many

Despite the success of these graph mmmg algorithms,
most of them lack fairness

Compared with achieving fairness in the context of in-
dependent and identically distributed (i.i.d.) data, fulfilling
fairness in graph mining can be non-trivial due to two
main chall The first challenge is to proper
fairness notions as the criteria to determine the existence of
unfairness (i.e., bias). Although a vast amount of traditional
algorithmic fairness notions have been proposed centered
on iid. data [42], [111], they are unable to reflect the bias
exhibited by the relational information (i.e., the topology)
in graph data. For example, the same population can be

they could yield discriminatory results mwards certain pop-
ulations when such algorithms are exploited in human-
centered applications [80]. For example, a social network-
based job recommender system may unfavorably recom-
mend fewer job opportunities to individuals of a certain
gender [97] or individuals in an underrepresented ethnic
group [150]. With the widespread usage of graph min-
ing algorithms, such potential discrimination could also
exist in other high-stake applications such as disaster re-
sponse [159], criminal justice [3], and loan approval [136].
In these applications, critical and life-changing decisions
are often made for the individuals involved. Therefore,
how to tackle unfairness issues in graph mining algorithms
naturally becomes a crucial problem.
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d with different topologies as in Fig. 1a) and [1b}
where each node represents an mdlvldual and the Color
of nodes denotes their d
such as different genders. Compared with the graph topol-
ogy in Fig.[1a) the topology in Fig. \_[has more mn-agroup
edges than intc ip edges. The dominance of intra-group
edges in the graph topology is a common type of bias
existing in real-world graphs [39], [41], [70], which cannot
be captured by traditional algorithmic fairness notions. The
second challenge is to prevent the graph mining algorithms
from inheriting the bias exhibited in the input relational
information [41], [112], [148], [160]. We present a toy ex-
ample to how the i
mechanism in Graph Neural Networks (GNNs) [64], [86],
[161] induces bias to the output node embeddings from a
biased graph topology in Fig. [ In the input space, the
node features are uniformly distributed. However, when the
information propagation is performed on a biased topology
as in Fig.[1b} the information received by nodes in different
subgroups could be biased [41], leading to a biased embed-
ding distribution in the output space.

There has been emerging research interest in fulfilling
algorithmic faimess in graph mining. Nevertheless, the
studied fairness notions vary across different works, which
can be confusing and impede further progress. Meanwhile,
different in achieving various

J. Li is with Department of Electrical and Computer ing, De-
partment of Computer Science, and School of Data Science, University of
Virginia, Charlottesoille, Virginia, US.

E-mail: jundong @virginia.edu

©2023 IEEE.

re
fairness notions. Without a clear understanding of the cor-
responding mappings, future fair graph mining algorithm
design can be difficult. Therefore, a systematic survey of
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[53], traffic forecasting [72], [100], and drug discovery [15],
[172]. In recent years, a number of graph mining algorithms
have been proposed to gain a deeper understanding of such
data. These algorithms have shown promising performance
on graph analytical tasks such as node classification [59],
[86], [161] and link prediction [4], [103], [109], contributing
to great advances in many graph-based applications.
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PyGDebias: 10+ popular

algorithms and 20+
graph datasets.

Collected Algorithms

13 different methods in total are implemented in this library. We provide an overview of their characteristics as

follows.

Methods
FairGNN [2]
EDITS [3]
FairWalk [4]
CrossWalk [5]
UGE [6]
FairVGNN [7]
FairEdit [8]
NIFTY [9]
GEAR [10]
INFORM [11]
REDRESS [12]
GUIDE [13]

RawlsGCN [14]

Debiasing Technique
Adversarial Learning
Edge Rewiring
Rebalancing
Rebalancing
Edge Rewiring
Adversarial Learning
Edge Rewiring
Optimization with Regularization
Edge Rewiring
Optimization with Regularization
Optimization with Regularization
Optimization with Regularization

Rebalancing

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives

Fairness Notions
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group/Counterfactual Fairness
Group/Counterfactual Fairness
Individual Fairness
Individual Fairness
Individual Fairness

Degree-Related Fairness

Paper & Code
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]

[Paper] [Code]



Outline

Techniques for Fair Node Embeddings

Real-World Applications
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Graph Machine Learning Algorithms

What are graph machine learning (ML) algorithms?

Knowledge Graphs E-Commerce Networks

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Graph Machine Learning Algorithms (Cont.)

What are graph machine learning (ML) algorithms?

In general, graph machine learning algorithms
extract information encoded in the graph
data to facilitate our understanding (on these
graphs) and gain benefit on various predictive tasks.

* Who are potential
friends?

Which item will
this customer buy?

Which loan
applicant is with
the lowest risk of
debt default?

Algorithms

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 7



Popular Graph ML Algorithms

Shallow graph embedding
methods.

Learning node embeddings that
preserve the structural proximity.

Typical examples: Deepwalk,
Node2Vec, etc.,

-1.0 -05 0.0 0.5 1.0 15 2.0 2.5

(a) Input: Karate Graph (b) Output: Representation

Graph Neural Networks
(GNNs).

Encoding the node attribute and , /
structure information into the [+ [iabel]
learned node embeddings. ®
Typical examples: Graph
Convolutional Networks (GCNs),
GraphSAGE, etc.

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label

from neighbors using aggregated information

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 8



The Risk of Bias in Graph ML

Potential discrimination in
recommender systems.
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Popular items are often over-
emphasized in recommendations, while
less popular ones get less exposure [,

[1] Abdollahpouri, Himan, et al. "The impact of popularity bias on fairness and calibration in recommendation." arXiv preprint arXiv:1910.05755 (2019).
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The Risk of Bias in Graph ML

Potential discrimination in
recommender systems.
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Popular items are often over- Unpopular providers always bear
emphasized in recommendations, while much less exposure rates across
less popular ones get less exposure [, different recommendation models [2],

[1] Abdollahpouri, Himan, et al. "The impact of popularity bias on fairness and calibration in recommendation." arXiv preprint arXiv:1910.05755 (2019).
[2] Qi, Tao, et al. "Profairrec: Provider fairness-aware news recommendation.” In SIGIR 2022.
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The Risk of Bias in Graph ML (Cont.)

° ° ° ° ° [ ] ’\/ .' '
Potential discrimination in social networks. ‘\
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Users who get recommended to be
connected exhibit divergence
between males and females [,

[1] Stoica, Ana-Andreea, et al. “Algorithmic Glass Ceiling in Social Networks: The effects of social recommendations on network diversity.” In WWW 2018.
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The Risk of Bias in Graph ML (Cont.)

Potential discrimination in social networks. ‘i"' 5@79\)’
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Users who get recommended to be
connected exhibit divergence
between males and females [,
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Callback Rates
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Republican Politically = Democratic
States  Mixed States States

Users’ religion could also be a source
of hiring discrimination in social
networks [2],

[1] Stoica, Ana-Andreea, et al. “Algorithmic Glass Ceiling in Social Networks: The effects of social recommendations on network diversity.” In WWW 2018.
[2] Acquisti, Alessandro, et al. "An experiment in hiring discrimination via online social networks." Management Science 66.3 (2020): 1005-1024.
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Algorithmic Fairness

Then how to define fairness?
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Algorithmic Fairness

Then how to define fairness?

Fairness can be defined in different ways [1: different real-world
applications show biases from various perspectives [21.

[1] Du, Mengnan, et al. "Fairness in deep learning: A computational perspective." IEEE Intelligent Systems 36.4 (2020): 25-34.
[2] Dong, Yushun, et al. "Fairness in graph mining: A survey." IEEE Transactions on Knowledge and Data Engineering (2023).
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Algorithmic Fairness

Then how to define fairness?

Fairness can be defined in different ways [1: different real-world
applications show biases from various perspectives [2].

For example, it depends on the specific studied problem to
determine which case should be considered as fair.

[1] Du, Mengnan, et al. "Fairness in deep learning: A computational perspective." IEEE Intelligent Systems 36.4 (2020): 25-34.
[2] Dong, Yushun, et al. "Fairness in graph mining: A survey." IEEE Transactions on Knowledge and Data Engineering (2023).
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Algorithmic Fairness (Cont.)

Then how to define fairness?

Despite the lack of a universal criterion for fairness, we could
still study fairness in algorithms: there are various existing
fairness notions based on people’s awareness.
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Algorithmic Fairness (Cont.)

Then how to define fairness?

Despite the lack of a universal criterion for fairness, we could
still study fairness in algorithms: there are various existing
fairness notions based on people’s awareness.

Application
Scenarios

'mi'n
LLLL
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Algorithmic Fairness (Cont.)

Then how to define fairness?

Despite the lack of a universal criterion for fairness, we could
still study fairness in algorithms: there are various existing
fairness notions based on people’s awareness.

|:> Various fairness
notions

People’s
awareness

Application
Scenarios
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Algorithmic Fairness (Cont.)

Then how to define fairness?

Despite the lack of a universal criterion for fairness, we could
still study fairness in algorithms: there are various existing
fairness notions based on people’s awareness.

|:> Various fairness
notions

People’s

Application
Scenarios
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AAAA
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in algorithms?
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Fairness in Graph ML Algorithms

Then how to define fairness?

In the realm of graph machine learning...

|:> airness notions on
I:> graphs

People’s

b awareness ! ]

|
‘\ .
/ How to realize them in

graph machine

|
l\i’ ’ learning algorithms?

Graph-based
application
scenarios
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Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.
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Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.

(1) Formulating proper fairness notions as the criteria to
determine the existence of unfairness (i.e., bias).
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Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.

(1) Formulating proper fairness notions as the criteria to
determine the existence of unfairness (i.e., bias).

Attributed
Graph 1

Attributed
Graph 2

Attribute dimension 1

Attribute dimension 1

+ Male Female

e R
Attribute dimension 0

+  Male Female

Attribute dimension 0
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Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.

(1) Formulating proper fairness notions as the criteria to
determine the existence of unfairness (i.e., bias).

(2) Preventing the graph ML algorithms from inheriting the
bias exhibited in the input graphs.
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Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.

(1) Formulating proper fairness notions as the criteria to
determine the existence of unfairness (i.e., bias).

(2) Preventing the graph ML algorithms from inheriting the
bias exhibited in the input graphs.

——— - - ——— —— ——— —————

[
"
o
Qo
.:.0

——————————————————————————————————————

Compared with the structure in (a), the bias in the graph structure of (b) could
lead to biased embeddings in Graph Neural Networks (GNNs).

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 2 5




Fulfilling Fairness in Graph ML Algorithms

Unique Challenges of fulfilling fairness in graph ML algorithms.

(1) Formulating proper fairness notions as the criteria to
determine the existence of unfairness (i.e., bias).

(2) Preventing the graph ML algorithms from inheriting the
bias exhibited in the input graphs.

_________________________________________________________

f Vo A i
b xdx i & Kol Xy X
e x b x bl S22 [ X ¥
LRSI % 72N E AR
e X+X e o + + ¥ §

_________________________________________________________

( Input Space ] [Propagation in GNN] [ Output Space ]

An example in Graph Neural Networks (GNNSs): the unbalance between intra-
group and inter-group edges could easily induce bias in the outcome space [1,

[1] Dong, Yushun, et al. "Fairness in graph mining: A survey." IEEE Transactions on Knowledge and Data Engineering (2023).
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Techniques for Fair Node Embeddings
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Real-World Applications
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Taxonomy of Fairness Notions

A taxonomy of commonly used algorithmic fairness notions

in graph ML.

Node Pair Distance-Based Fairness

Demographic Parity I—
Equality of Odds I' Group Fairness

Individual Fairness

Node Ranking-Based Fairness

Equality of Opportunity I—
Fairness Notions in Node Embedding Learning I—
Degree-Related

Fairness Notions in
Graph ML

i Counterfactual
Fairness

Fairness Notions in Graph Clustering

Recommender Systems

|

Fairness Notions in Graph Clustering .— Fairness ~oolicat
pplication-

Specific Fairness

Knowledge Graphs
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Taxonomy of Fairness Notions (Cont.)

A taxonomy of commonly used algorithmic fairness notions
in graph ML.

Demographic Parity

Equality of Odds

Equality of Opportunity

Graph ML

Fairness Notions in ]

Fairness Notions in Node Embedding Learning

Fairness Notions in Graph Clustering

A general idea of group fairness: categorical sensitive attributes (e.g.,
gender, race) divide the whole population into different sensitive
subgroups, and each group should gain their fair share of interest [

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 2 9




Demographic Parity

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [,

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Female Male
A A A A A A o 6 0 O

FAARAA-NAAN

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.
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Demographic Parity

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [*.

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Female Male

GRRP

T

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.
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Demographic Parity

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [*.

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Female Male

FRRP-REP

: . 0
Fair in perspective of <:|
Demographic Parity.

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.
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Demographic Parity

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [*.

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Female Male
. : DA A A A o 6 0 O
Fair in perspective of
Demographic Parity. Sm

WPy

%
TS

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.
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Demographic Parity

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [*.

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Female Male
.. : D2 2 A A o 06 0 O
Fair in perspective of
Demographic Parity. >

WPy

.. . DA A A A
Unfair in perspective <:|
of Demographic Parity.

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.

&%
&%
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Demographic Parity (Cont.)

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [,

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Criterion: p(}? — 1|S — 0) = P(Y = 1|S = 1)

Metric: App = |P(Y = 1| =0) = P(Y = 1|5 = 1)]

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.
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Demographic Parity (Cont.)

Group Fairness: Demographic Parity

Demographic Parity is first proposed in binary classification
task for tabular data [,

Demographic Parity is considered as achieved if the model yields the
same positive rate for individuals in both sensitive subgroups.

Criterion: p(}? 1|5 — ()) — P(Y = 1|S = 1)

Metric: App = |P(Y = 1| =0) = P(Y = 1|5 = 1)]

Recent works on fairness for graph ML algorithms have extended
this notion to other settings, including link prediction 23l and
scenarios with continuous sensitive feature(s) values 14J;

[1] Dwork, Cynthia, et al. "Fairness through awareness." In ITCS 2012.

[2] Acquisti, Alessandro, et al. "An experiment in hiring discrimination via online social networks." Management Science 66.3 (2020): 1005-1024.
[3] Du, Mengnan, et al. "Fairness in deep learning: A computational perspective.” IEEE Intelligent Systems 36.4 (2020): 25-34.

[4] Dong, Yushun, et al. "Fairness in graph mining: A survey." IEEE Transactions on Knowledge and Data Engineering (2023).
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives




Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

Equality of Odds: the positive rates are enforced to be the

same between sensitive subgroups conditional on the ground
truth class labels.

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

Equality of Odds: the positive rates are enforced to be the
same between sensitive subgroups conditional on the ground
truth class labels.

Criterion: P(? — 1|S =0,Y = y) = P(? = 1|5 =1,Y = Y)
Metric:  Aggp=|P(V =1|5=0v=1)-P(V =15 =1,V = 1)|
+lP(V=1s=0v=0)-P( =1|5s =17 = 0)|

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

The intuition of Equality of Odds: to enforce the true
positive rate (right and positive results) and false positive rate

(wrong but positive results) to be the same across sensitive
subgroups;

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

The intuition of Equality of Odds: to enforce the true
positive rate (right and positive results) and false positive rate

(wrong but positive results) to be the same across sensitive
subgroups;

Equality of Opportunity: the positive rates are enforced to

be the same between sensitive subgroups conditional on the
positive ground truth class labels.

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

The intuition of Equality of Odds: to enforce the true
positive rate (right and positive results) and false positive rate

(wrong but positive results) to be the same across sensitive
subgroups;

Equality of Opportunity: the positive rates are enforced to
be the same between sensitive subgroups conditional on the
positive ground truth class labels.

Criterion: P(V = 1|5 =0, )=P(V=1|5=1, )
Metric: Agy = |P(Y = 1|5 =0, )—PY =1|S=1,

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

The intuition of Equality of Odds: to enforce the true
positive rate (right and positive results) and false positive rate
(wrong but positive results) to be the same across sensitive
subgroups;

The intuition of Equality of Opportunity: to enforce the true
positive rate (right and positive results) to be the same across sensitive
subgroups;

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
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Equality of Odds/Opportunity

Group Fairness:
Equality of Odds !l vs. Equality of Opportunity [!

The intuition of Equality of Odds: to enforce the true
positive rate (right and positive results) and false positive rate
(wrong but positive results) to be the same across sensitive
subgroups;

The intuition of Equality of Opportunity: to enforce the true
positive rate (right and positive results) to be the same across sensitive
subgroups;

Extension to tasks other than node classification, e.g., link prediction [*- 2],

[1] Hardt, Moritz, et al. "Equality of opportunity in supervised learning." In NeurIPS, 2016.
[2] Acquisti, Alessandro, et al. "An experiment in hiring discrimination via online social networks." Management Science 66.3 (2020): 1005-1024.
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Fairness in Node Embedding Learning

(1) Distribution-Based Fairness.

Embedding Dimension 1

>

4+ Male Female

4+ o4+
& ++.|.+
+ +T ks
+ +
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+
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>

Embedding Dimension 2

Unfair node embeddings

Embedding Dimension 1

A 4 Male Female

+ + +
& 4
+-|-.|.

+
+ s
&+

+

+ &+
+

+
+ 3
+ +
+ &
&+ + +

+
+
+

+

>

Embedding Dimension 2

Fair node embeddings

[1] Dong, Yushun, et al. "Edits: Modeling and mitigating data bias for graph neural networks." In WWW 2022.
[2] Fan, Wei, et al. "Fair graph auto-encoder for unbiased graph representations with Wasserstein distance." In ICDM 2021.

Criterion: Learned node
embedding distributions across
sensitive subgroups should be
similar.

Metric: Measures of distance
between distributions, e.g.,

Wasserstein distance [ 21,
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Fairness in Node Embedding Learning

(1) Distribution-Based Fairness. L.
Criterion: Learned node

embedding distributions across

A + Male Female A 4+ Male Female . .
- + - sensitive subgroups should be
L + '|'.:..|. & .g + + + . * ° °
: srE HIEP S similar.
a +
£ s +++I++ £ ++-|-+ T . .
1 *atle i R Metric: Measures of distance
= = + + . . .
e between distributions, e.g.,
' . .
ombedding Dmension s eeameomeema . Wasserstein distance [ 2],

Unfair node embeddings Fair node embeddings

(2) Model-Based Fairness.

Criterion: There should be no information about sensitive attributes
encoded in the learned node embeddings.

Metric: Prediction accuracy on the sensitive attributes with a
predictive model (the lower, the better) 31,
[1] Dong, Yushun, et al. "Edits: Modeling and mitigating data bias for graph neural networks." In WWW 2022.

[2] Fan, Wei, et al. "Fair graph auto-encoder for unbiased graph representations with Wasserstein distance." In ICDM 2021.
[3] W, Le, et al. "Learning fair representations for recommendation: A graph-based perspective.”" In WWW 2021.
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Fairness in Graph Clustering

Nodes from two sensitive
Cluster 1
subgroups: O O

Graph Clustering

> Cluster 2
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Fairness in Graph Clustering

Nodes from two sensitive

subgroups: O O

Cluster 1

Graph Clustering

> Cluster 2

Cluster 1

Criterion: Nodes from different sensitive

subgroups should be proportionally
represented in each cluster [,

Cluster 3 Metric: Balance score, which measures fairness
with the minimum ratio of node number 1.

i Vi N Cy
i#ilii'e(1,...H} |[V;, 0 Cy

Cluster 2

Balance(Cy) =

V;: node set of sensitive subgroup i;

[1] Kleindessner, Matth&us, et al. "Guarantees for spectral clustering with fairness . .
constraints." In ICML 2019. Cl . IlOde Set Of ClllSteI' 1,
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Taxonomy of Fairness Notions

Another critical fairness notion in graph ML: Individual
Fairness.

Node Pair Distance-Based Fairness

Node Ranking-Based Fairness

' Individual Fairness ’

Fairness Notions in Graph Clustering
Fairness Notions in
Graph ML

A general idea of individual fairness: similar individuals should
receive similar outputs from the graph ML algorithms 1.

[1] Zeng, Ziqian, et al. Fair representation learning for heterogeneous information networks. In AAAI, 2021.
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Node Pair Distance-Based Fairness

For any pair of node, this fairness notion enforces the output
distance to be smaller than a scaled input distance -
which is consistent with the general idea of “similar individual
should receive similar output” 1,

Similar people Similar output
(@ >
>

N

> >

N

Input Space Output Space

[1] Kang, Jian, et al. Inform: Individual fairness on graph mining. In SIGKDD, 2020.
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Node Pair Distance-Based Fairness

For any pair of node, this fairness notion enforces the output
distance to be smaller than a scaled input distance -
which is consistent with the general idea of “similar individual
should receive similar output” [,

Mathematically, we have
Di(f(x), f(v)) <LD,(x,y) V(x,y)  L:Lipschitz Constant

Output distance  Input distance

In practice, individual fairness enforces the following inequality

WY1 =Y, : % < Vi,j=1,..,n

S[i, /]
Y: Output matrix to compute D;; S: Similarity matrix according to D, (x, y)

[1] Kang, Jian, et al. Inform: Individual fairness on graph mining. In SIGKDD, 2020.
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Node Ranking-Based Fairness

Node Pair Distance-Based Fairness can lead to unfairness in a
relative perspective: B is closer to A compared with C in the
input space, but A and C is closer in the output space.

Similar output?

Input Space Output Space
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Node Ranking-Based Fairness

Node Pair Distance-Based Fairness can lead to unfairness in a
relative perspective: B is closer to A compared with C in the
input space, but A and C is closer in the output space.

Similar output?

Input Space Output Space

This could lead to a sense of unfairness for involved individuals.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives




Node Ranking-Based Fairness

Criterion: for each individual, its similarity rankings (between itself and
all other people) in both input and output space should be the same [1,

[1] Dong, Yushun, et al. “Individual fairness for graph neural networks: A ranking based approach.” In SIGKDD, 2021.
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Node Ranking-Based Fairness

Criterion: for each individual, its similarity rankings (between itself and
all other people) in both input and output space should be the same [1.

Ranking in the input space

u u u Uy u
9. ®D'eD
: v (V)

Ranking in the output space

u u u u u )
CRCL R R
° |} (V)
u» u u“uél u” Consistent
‘BDO®P -
* v ) V

u u u u4_ u
NN
* v ()

Metrics: average ranking similarity across all individuals, e.g., average
NDCG@k 2],

[1] Dong, Yushun, et al. “Individual fairness for graph neural networks: A ranking based approach.” In SIGKDD, 2021.
[2] Kleindessner, Matthius, et al. "Guarantees for spectral clustering with fairness constraints." In ICML, 2019.
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Individual Fairness in Graph Clustering

P TS . Cluster 1
¥ byt g th 4y i Graph Clustering

B )

Cluster 3
Cluster 2
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Individual Fairness in Graph Clustering

P TS . Cluster 1
¥ byt g th 4y i Graph Clustering

B )

Cluster 3
Cluster 2

Criterion: For every node O , its neighbors should
be proportionally represented by each cluster [1],

W =

W =
W | =

[1] Gupta, Shubham, et al. “Protecting individual interests across clusters: Spectral clustering with guarantees.” arXiv preprint arXiv:2105.03714, 2021.
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Individual Fairness in Graph Clustering

R Y R . Cluster 1
¥ byt g th 4y i Graph Clustering

p Tty

Cluster 3
Cluster 2

Criterion: For every node O , its neighbors should
be proportionally represented by each cluster [1],

W =

Metric: how disproportionately neighbors of a node
are assigned in different clusters (node-level) [,

1
1 3
e C,: node set of cluster k;
3 |C. NN, | :
p; = min C;: node set in cluster I;
kie{l,..K} [C; N I, | : Neighbor set of node v;;

[1] Gupta, Shubham, et al. “Protecting individual interests across clusters: Spectral clustering with guarantees.” arXiv preprint arXiv:2105.03714, 2021.
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Taxonomy of Fairness Notions

A fairness notion tailored with graph structure:
Degree-Related Fairness.

Fairness Notions in
Graph ML

Degree-Related

Fairness

A general idea of degree-related fairness: the degree of nodes should be
independent from the quality of their corresponding predictions [t 2. 3],

[1] Tang, Xianfeng, et al. “Investigating and mitigating degree-related biases in graph convoltuional networks.” In CIKM, 2020
[2] Kang, Jian, et al. “Rawlsgen: Towards Rawlsian difference principle on graph convolutional network.” In WWW, 2022.
[3] Liu, Zemin, et al. "On Generalized Degree Fairness in Graph Neural Networks." arXiv preprint arXiv:2302.03881 (2023).
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Degree-Related Fairness

A typical information aggregation in Graph Neural Networks:

TARGET NODE

l

INPUT GRAPH Ol

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Degree-Related Fairness

A typical information aggregation in Graph Neural Networks:

In graph data, a critical

TARGET NODE source of information is
the complementary
l information between
neighbors.

INPUT GRAPH Ol
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Degree-Related Fairness (Cont.)

A typical average loss distribution across node degrees in

Graph Neural Networks 1

=
[+"]

Average Loss
© © = = = ¥
[=)] [e+] o N o ()]

&
@

Average Accuracy

0 10 20 30 40 50
Degree

In graph data, a critical
source of information is
the complementary
information between
neighbors.

However, graph mining
algorithms relying on such
information tend to yield
predictions with much
worse quality for low-
degree nodes, as they have
fewer neighbors.

[1] Jian, Kang, et al. “Rawlsgen: Towards Rawlsian difference principle on graph convolutional network.” In TheWebConf, 2020.
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Degree-Related Fairness (Cont.)

A typical average loss distribution across node degrees in

Graph Neural Networks:

s In graph data, a critical
“i16l o e source of information is
o
= 141 the complementary
o = information between
E 0 neighbors.

0.8

o
o

However, graph mining

g;j - algorithms relying on such
2 0e information tend to yield
T o7 predictions with much
gas worse quality for low-
2°57 o e degree nodes, as they have

20 30 40 50 fewer neighbors.
Degree

Degree-Related Fairness requires that nodes should bear similar utility (e.g., node
classification accuracy) in the graph mining algorithms regardless of their degrees.
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Taxonomy of Fairness Notions

A fairness notion from the causal perspective:
counterfactual fairness.

Fairness Notions in
Graph ML

Counterfactual
Fairness

A general idea of counterfactual fairness: the sensitive information of any
individual should not causally influence the corresponding output [,

[1] Kusner, Matt J., et al. “Counterfactual fairness.” In NeurIPS, 2017.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 64




Background: Causal Model

Structural causal model [1

« Independent exogenous variables (U)
« Endogenous variables

 Causal graph (a Directed Acyclic Graph) & structural equations
(functions which describe the relations between variables)

Biased information

[1] Pearl, Judea. Causality. Cambridge university press, 2009.
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Counterfactual Fairness

Prediction Y is counterfactually fair if under any
features X = x and sensitive attribute S = s:

P(Hscd=yix = x5 =9 = PTcy)= v = xiSﬂ

The value of the prediction if S had been set to s (s’)
Notice: other features may change correspondingly.

Features Sensitive attribute

Descendants of the sensitive attribute will
be also changed after intervention
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Counterfactual Fairness on Graphs

Consider a network of loan applicants (including males
and females):

Bank

\|\E| L
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Counterfactual Fairness on Graphs

Consider a network of loan applicants (including males
and females):

Criterion: If the sensitive feature of an individual is changed into a different
value (e.g., from s to s'), the output should still be maintained the same [,

P(Vses=ylX=xS=s)=P(Vses, =y|X=x,5 =5)

Metric: the percentage of nodes whose predicted label changes when their
sensitive feature values are changed.

[1] Kusner, Matt J., et al. “Counterfactual fairness.” In NeurIPS, 2017.
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Counterfactual Fairness on Graphs

Limitations of the above fairness notion:

(1) The sensitive attributes of each node’s neighbors may
causally affect the prediction w.r.t. this node (red dashed edges);

/ o 'I'I'\ Flip the value of / e ':'I'\

'\-::&m /-::n sensitive attribute .\-:En /-I&-:I
v E| o | E
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Counterfactual Fairness on Graphs

Limitations of the above fairness notion:

(2) The sensitive attributes may causally affect other features
and the graph structure (blue dashed edges).

/ o 'I'I'\ Flip the value of / e 'I'I'\

'\-:En /:n sensitive attribute & .:z:. /:n
< A i> < A
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Graph Counterfactual Fairness

« Graph counterfactual fairness [!: An encoder Zi = (®(X, A));
satisfies graph counterfactual fairness if for any node i:

P(Zi)ss|X =X, A= A) = P((Z)sv|fX = XJA =\A|),

AN e

The node representation of i when the values of Node features Graph
the sensitive attributes of all nodes on the graph (including structure
are setto s’ (s”) sensitive attribute)

s’ (s”) : an n-dimensional vector for an n-node graph

« Example: the prediction for one’s loan application being
approved should be the same regardless of this applicant’s and
his/her friends’ (connected in a social network) sensitive
information.

[1] Ma, Jing, et al. "Learning fair node representations with graph counterfactual fairness." In WSDM, 2022.
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Taxonomy of Fairness Notions

Fairness notions in real-world applications:
application-specific fairness.

Fairness Notions in
Graph ML

Recommender Systems

Knowledge Graphs

Application-
‘ Specific Fairness '

In real-world applications, certain scenarios could bring a sense of
unfairness, which requires defining application-specific fairness to
depict if there is any exhibited bias.
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User Fairness in Recommmendation

Application-specific fairness in recommender systems.

(1) User Fairness. Quantitative recommendation utility for different groups.

40 30
More biased [ Fairer [1:

F1@10
]
o
|
|
F1@10
|
|
|
|

10
10 |_| 1
04— 00—

BiasedMF NeuMF STAMP BiasedMF NeuMF STAMP

|
|

Advantaged Disadvantaged Overall Advantaged Disadvantaged QOverall

[1] Li, Yungqi, et al. “User-oriented fairness in recommendation.” In WWW, 2021.
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User Fairness in Recommmendation

Application-specific fairness in recommender systems.

(1) User Fairness. Quantitative recommendation utility for different groups.

4Q 30
More biased [ Fairer [1:

20

F1@10
|
F1@10

|

|
|

|

|
1

10

05— oL
BiasedMF NeuMF STAMP BiasedMF NeuMF STAMP

Advantaged Disadvantaged Overall Advantaged Disadvantaged QOverall

Criterion: User fairness requires that the recommendation quality for different
users should be similar [%- 2],

Metric: Measured with the recommendation quality discrepancy between different
groups of users (e.g., active users vs. inactive users) 2],

[1] Li, Yungqi, et al. “User-oriented fairness in recommendation.” In WWW, 2021.
[2] Fu, Zuohui, et al. “Fairness-aware explainable recommendation over knowledge graphs.” In SIGIR, 2020.
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Popularity Fairness in Recommendation

Application-specific fairness in recommender systems.

(2) Popularity Fairness.

The filter bubble phenomenon: sometimes users
are isolated from less popular items or information.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Popularity Fairness in Recommendation

Application-specific fairness in recommender systems.

(2) Popularity Fairness.

The filter bubble phenomenon: sometimes users
are isolated from less popular items or information.

Criterion: Popular instances should not be over-emphasized compared with
other instances [,
Metric: Measured with the average recommendation rate of less popular instances.

[1] Fisher, Joseph, et al. "Measuring social bias in knowledge graph embeddings." In workshop of AKBC, 2020.
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Provider Fairness in Recommendation

Application-specific fairness in recommender systems.

6000

(3) Provider Fairness. [ R
. | FAR |
BN PFAR

In a recommender system:

there could be significant
differences in the exposure
rate of items from different
providers in a
recommendation system [,

number of recommendation

provider

[1] Liu, Weiwen, et al. "Personalizing fairness-aware re-ranking." arXiv preprint arXiv:1809.02921 (2018).
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Provider Fairness in Recommendation

Application-specific fairness in recommender systems.

6000

(3) Provider Fairness. [ R
~ |mmm FAR
BN PFAR

5000}

In a recommender system:
4000
there could be significant
differences in the exposure
rate of items from different
providers in a
recommendation system [2],

30000

2000}

number of recommendation

1000k oo

0

provider

Criterion: Items from different providers should receive the same exposure rate
to the customers [ 2.3,

Metrics: (1) number of providers whose corresponding exposure rates are lower
than a threshold exposure rate [1]; (2) diversity of providers for recommended
items [2]; (3) item exposure rate difference between different providers [31;

[1] Boratto, Ludovico, et al. Interplay between upsampling and regularization for provider fairness in recommender systems. In UMUAI, 2020.
[2] Liu, Weiwen, et al. "Personalizing fairness-aware re-ranking." arXiv preprint arXiv:1809.02921 (2018).
[3] Patro, Gourab, et al. “Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms.” In WWW, 2020.
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Marketing Fairness in Recommendation

Application-specific fairness in recommender systems.

Users’ interactions are biased according to the marketing
strategies: under certain marketing strategy, identity-
consistent users interact more with this item [,

(4) Marketing Fairness.

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.
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Marketing Fairness in Recommendation

Application-specific fairness in recommender systems.

Users’ interactions are biased according to the marketing
strategies: under certain marketing strategy, identity-
consistent users interact more with this item [,

(4) Marketing Fairness.

Identity Consistent wwos P8 | Identity Consistent
Users: Females Nk | 7 Users: Males

GRAALA YA

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Marketing Fairness in Recommendation

Application-specific fairness in recommender systems.

Users’ interactions are biased according to the marketing
strategies: under certain marketing strategy, identity-
consistent users interact more with this item [,

(4) Marketing Fairness.

Identlty Consistent umn:ﬂ!!! ‘ 1 i : Identlty Consistent
Users: Females ‘ 7 Users: Males

GRQAQLA QA

Criterion: Recommender systems should not inherit such bias from data and yield biased
recommendations M.
Metric: The difference of the recommendation error variance between identity-consistent and

identity-inconsistent users [

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.
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Social Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(1) Social Fairness.

A traditional stereotype: bankers are males, while nurses are females [1],

[1] Zeng, Zigian, et al. “Fair representation learning for heterogeneous information networks.” In AAAI, 2021.
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Social Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(1) Social Fairness.

A traditional stereotype: bankers are males, while nurses are females [1],

Criterion: The historical biases should not be encoded in the learned entity
embeddings in knowledge graphs [1].

Metric: Distribution difference between the prediction distribution and uniform
distribution over all possible sensitive feature values (2],

[1] Zeng, Ziqian, et al. “Fair representation learning for heterogeneous information networks.” In AAAI, 2021.
[2] Fisher, Joseph, et al. "Debiasing knowledge graph embeddings." In EMNLP, 2020.
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Path Diversity Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(2) Path Diversity Fairness.

On a user-item knowledge
graph:

Meta-path distributions over
their types can be different
across different person entity
groups Ml
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——{ Keychain )
N 2

4

Linda

mention ™\ featured_by

a —>{ “Blink” /_vi\ Twinkling hairpin ) |

Luna

y =N 4 >N
([ Hand bag | [ Hello Kitty |
. 4 A A

\

\  purchase purchase >N
| Bracelet
N p

Metapath number
w
o

w

{ Sweater |
\ 4

Metapath Distribution

N
w
1

N
o

=
w

=
o

B Inactive User
B Active User

123456 7 8 9101112131415
Metapath ID

[1] Fu, Zuohui, et al. “Fairness-aware explainable recommendation over knowledge graphs.” In SIGIR, 2020.
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Path Diversity Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(2) Path Diversity Fairness. Metapath Distribution

B Inactive User
B Active User

w
o
1

On a user-item knowledge
graph:

N
w
1

N
o

=
w

Meta-path distributions over
their types can be different
across different person entity
groups Ml

Metapath number
o

w

0_
123456 7 8 9101112131415
Metapath ID

Criterion: The distributions of meta-paths (over their types) should be similar across
different demographic subgroups in the knowledge graph [,

Metric: The difference of Simpson’s Index of Diversity (SID) between the meta-path
distributions of different demographic subgroups [*.

[1] Fu, Zuohui, et al. “Fairness-aware explainable recommendation over knowledge graphs.” In SIGIR, 2020.
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Popularity Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(3) Popularity Fairness. Prediction for person entities based on DBpedia.
More biased [1; - / Fairer [1]: 1]
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Popularity Fairness in Knowledge Graphs

Application-specific fairness in knowledge graphs.

(3) Popularity Fairness. Prediction for person entities based on DBpedia.

0.8
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node degree node degree

Criterion: The prediction accuracy under certain tasks should be uniformly
distributed w.r.t. entity node popularity (e.g., defined as the entity node degree)
in the knowledge graph 1.

Metric: Difference between the output distribution of accuracy w.r.t. entity
popularity and a uniform distribution [*.

[1] Arduini, Mario, et al. “Adversarial learning for debiasing knowledge graph embeddings.” In SIGKDD, 2020.
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Motivation and Unique Challenges

- Motivation: Theoretical understanding of bias is crucial
 Large-scale deployment in critical decision-making applications
» Guidance for fairness-aware algorithm design
 Explainability for the developed strategies

« Challenge: Analysis for tabular data cannot be dlrectlv

extended to graphs ATy
* Non-IID structure of graph data o 5 e
 Intertwined bias from both nodal features and L s
graph structure ,f'_. )

* Need to develop novel analysis techniques for different
learning frameworks and fairness notions

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Overview

Mean-discrepancy analysis
[Li, Peizhao, et. al., ICLR, 2021]
[Kose, O. Deniz, et. al., Arxiv, 2023]

Entropy-based analysis
[Jiang, Zhimeng, et al., Arxiv, 2023]

Correlation-based analysis
[Kose, O. Deniz et. al., TNNLS, 2023]

|
Analysis Techniques for

Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis
[Ma, Jiaqi, et. al., NeurIPS, 2021] [Kang, Jian et. al., WWW, 2022]
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Mean-discrepancy Analysis

* Bias term: discrepancy of node representations from two
sensitive groups
« Assuming binary sensitive attribute

 Inherently related to demographic parity

 Analytically demonstrated for both link prediction and node
classification

I+1 __ !
h’U —0 (ZuEN deg(v) W h )

 Existing two works:
« link prediction with mean aggregation scheme [!]
 node classification using attention-based aggregation [2]

R — (Zue v ab, - W )

[1] Li, Peizhao, et al. “On dyadic fairness: Exploring and mitigating bias in graph connections.” In ICLR, 2021.
[2]Kose, O. Deniz, et al. “FairGAT: Fairness-aware graph attention networks.” Arxiv, 2023.
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Intuitions from Mean-discrepancy

« These analyses show demographic parity affected by
weights on intra- and inter-edges

@ s=0 — intra-edges
@s=1 ---- inter-edges

« Main finding: Balance the weights of inter- and intra-edges
« Edge weight balancing
* Change input graph topology via edge augmentations
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Discrepancy for Mean Aggregation

- Bound A% .= ||E, .y [A%g(’v) | v € So| —Epny [Agg(v) | v E Sty

Mean aggregation at Ith layer

A =22

—
To = —1.7 Mo = 0.5 T3 = 2.6
) 1 . 1
v

z1=-03 z2=14

Theorem [1]: %, — ol < A, Vv €S

Aggr f
max { Bmin ||,Lio — Bl — 24,0} < ARE" < Buax 1o — pal, +2VNA

]EUNV [XU | (A 80]

[1] Li, Peizhao, et al. “On dyadic fairness: Exploring and mitigating bias in graph connections.” In ICLR, 2021.
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Guidelines for Fair Link Prediction

Aggr
max { Bmin [0 — M1 lloe — 28,0} < App™ < Brmax [|ko — M1l + 2V NA

Bmin = min {617 52} ) Bmax = 1max {617 62}
Ma 1= o 2o Avel  Sg i={v €S [N(v)NS # T}

* S5l Iy
_ _ My 1 1 _ L 0 L 1 OSiO — ::E;ar::dgzz
/81 o ‘1 limax (|30| —I_ |31|> 752 o |1 |80| |81| ®s=1 l 9
Dinax := maxy,cy deg(v) Sy = {4,5}
S =1{7}

* B : multiplying factor on the disparity of input representations

« Iftopology fixed, £, is a constant pre-determined by input graph
« Can modify the total weights of inter edges, m,,, to reduce 3,
* Manipulate m,, to reduce 3, tighter upper bound for A%%"

[1] Li, Peizhao, et al. “On dyadic fairness: Exploring and mitigating bias in graph connections.” In ICLR, 2021.
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Discrepancy Measure with Attention

* Most GNN structures assign equal weights to all

neighbors «

* GATs learn weights a,, indicating the

importance of neighbor u to node \
- Aggregation: h't!' =¢ (Zue N, Qg W 'h! )

* For the Ith GAT layer, [2] upper bounds the disparity of outputs
for two sensitive groups:

52“ = Hmean (hé-le | S; = ()) — mean (th : )H

 [2] further shows §,*!is equivalent to demographlc parity
for node classification, when the output of final layer is a
probability for class label 1 (e.g., sigmoid in the last layer)

[2] Kose, O. Deniz, et al. “FairGAT: Fairness-aware graph attention networks.” Arxiv, 2023.
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Mean Discrepancy for Attention

Theorem [2] spectral norm

I

5t < L (0max (WY [(RYaX + RYaX — 1)| 8L + ¢)

Lipschitz constant of the nonlinear activation

aX = ZQEN(k)mSi Qka for vy € S;,i#j where aX+a¥ =1

v

Total amount of attention
assigned to inter-edges

SX = {4,5)
SYX = {7}

Rx o 192 pr o 158

0 — intra-edges
1 ---- inter-edges

[2] Kose, O. Deniz, et al. “FairGAT: Fairness-aware graph attention networks.” Arxiv, 2023.
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Guidelines for Fair Attention

5t < L (0max (W) [(RYaX + RYaX —1)| 8 + ¢)

X =) eN(k)ns; Yka for vx €Sj,i# ]

I+1

aggregate

 Reduce |(R{aX + RjaX — 1)| for a tighter upper bound

« FairGAT [2lprovides a novel attention strategy that minimizes this term

min |RfaX + RyaX — 1]
aX

st. 0<aX <1

[2] Kose, O. Deniz, et al. “FairGAT: Fairness-aware graph attention networks.” Arxiv, 2023.
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Overview

Mean-discrepancy analysis
[Li, Peizhao, et. al., ICLR, 2021]
[Kose, O. Deniz, et. al., Arxiv, 2023]

Entropy-based analysis
[Jiang, Zhimeng, et al., Arxiv, 2023]

Correlation-based analysis
[Kose, O. Deniz et. al., TNNLS, 2023]

Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis
[Ma, Jiaqi, et. al., NeurIPS, 2021] [Kang, Jian et. al., WWW, 2022]
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Correlation-based Analysis [

e Correlation between features and sensitive attributes

leads to bias

* More problematic for graphs

* Generally, the neighbors share the same sensitive attribute

« Information aggregation among neighbors —>

Indirect use of sensitive
attributes in learning!

« Aggregated representations are correlated with sensitive attributes

- Bias measure [1: Correlation between aggregated
representations,Z'! = D~ (A +I)H'~!, and sensitive

attributes s

Degree matrix  Input representations

at the /th layer

[1] Kose, O. Deniz, et al. “Demystifying and mitigating bias for node representation learning.” In TNNLS, 2023.
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Correlation-based Analysis: Intuitions

 Factors of bias amplification

 Distributions of nodal features from different sensitive groups

features for node n set of nodes with sensitive attribute j

= " _
K = En,~v [Xn ‘ n € 8]] I {07 1}

* Node distribution

SY = {4,5}
St =1{7}

0 — intra-edges
1 ---- inter-edges

« Edge distribution

* Graph data augmentations on input graph

[1] Kose, O. Deniz, et al. “Demystifying and mitigating bias for node representation learning.” In TNNLS, 2023.
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Correlation for Mean Aggregation

» Approach![: Bound llplliwith p; = Corr(zi i,8)fori={1---F}

i-th aggregated feature

« Theorem [: ||p||1 <|lc||1(]|6]]1 max(v1,v2) + 2NA)

O 0:=py— 4y SY = {4,5}
nodes with at least one inter-edge = {7}

| E s

° M= ‘1 = Sl TS
inter degree of node m
n
O oy = ‘1 — 2min (mean (dx iy (U, € So) , mean (dx+dw vy, € 81))‘
-

intra degree of node m

[1] Kose, O. Deniz, et al. “Demystifying and mitigating bias for node representation learning.” In TNNLS, 2023.
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Guidelines from Correlation Analysis

e Terms, ||01]|,71,72, all depend on the input graph structure

and nodal features Decrease
upper bound

on correlation

» Design augmentation on input graph to reduce these terms

«  Optimal, fair augmentation strategies to lower bias terms [*]

features of node n set of nodes with sensitive attribute j

— —
8= g — Uy p; =En vlx,|nesS;], j={0,1} Nodal feature
augmentation

at least ong inter-edge
S5 |sy
M= |1_ Sol — I51]

:|‘ Augmentation on nodes

inter degree of node m
: dX dX
Yo = ‘1 — 2min (mean (thm - SO) , 1Imnearl (mhjn < Sl)) ‘
!

intra degree of node m edge
augmentation

[1] Kose, O. Deniz, et al. “Demystifying and mitigating bias for node representation learning.” In TNNLS, 2023.
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Augmented Graph Examples

— >
Node sampling reducing 71
Os=0 — intra-edges Os=0 — intra-edges
@®s=1 -- inter-edges @®s=1 ---- inter-edges
. . .

— Edge deletion reducing 72
Os=0 — intra-edges Os=0 — intra-edges
@®s=1 ---- inter-edges @®s=1 ---- inter-edges

}Edge addition reducing 72

Os=0 — intra-edges Os=0 — intra-edges
®s=1 ---- inter-edges @®s=1 ---- inter-edges

[1] Kose, O. Deniz, et al. “Demystifying and mitigating bias for node representation learning.” In TNNLS, 2023.
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Overview

Mean-discrepancy analysis
[Li, Peizhao, et. al., ICLR, 2021]
[Kose, O. Deniz, et. al., Arxiv, 2023]

Entropy-based analysis
[Jiang, Zhimeng, et al., Arxiv, 2023]

Correlation-based analysis
[Kose, O. Deniz et. al., TNNLS, 2023]

|
Analysis Techniques for

Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis
[Ma, Jiaqi, et. al., NeurIPS, 2021] [Kang, Jian et. al., WWW, 2022]
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Entropy-based Analysis ']

e Bias measure: mutual information between node
representations and sensitive attributes

« Idea: examine the change in mutual information

before/after mean aggregation over graph structure
« Identify the factors increases mutual information

e Mutual information is intractable to estimate
* [1] upper bounds mutual information, where the bound is used as
bias measure

I(,X)<—(1—=c¢c)In|[(1—c)+cexp(—Dxkr (P1||P))]

—clnfc+ (1 —c)exp (—Dgr, (P||P))] = Bias(s, )5)
1
c=E;[P(s; =1)] KL-divergence nodal features

following a GMM
P2 fx (Xi=x|si=—1) ~ N (11,%4) distribution
PEfx(Xi=x|s5=1)~N(u2,%2)

[1] Jiang, Zhimeng, et al. “Topology matters in fair graph learning: A theoretical pilot study.” Arxiv, 2023.
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Entropy-based Analysis: Intuitions
 Bias amplifying factors in graph-based aggregation

 Node number

 Density of graph connectivity  pq = E; [P (A = 1)]

- Sensitive attribute homophily coefficient €sens =P (s; = s, | Ajj = 1)

« Modify graph structure based on these factors

[1] Jiang, Zhimeng, et al. “Topology matters in fair graph learning: A theoretical pilot study.” Arxiv, 2023.
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Guidelines from Entropy-based Analysis

« Theorem l'!: In mean-aggregation over graph topology, bias
increasesif — » (v1 — v2)  min {B1, B2} > 1

_ . . _ PdE€sens i ; _

vy = (N1 1)5111ntra+1 Pintra = @ioaz probability of intra-edges
— , 1—¢€sens Ok .

Vg = (N1 é)zpmter Dinter = pd2(c(1—c) ) probability of inter-edges

B1 = N_1Dinter + (N1 — 1) Dintra + 1 N1 = Nc
62 — N—lpintra + (Nl - 1)pifnter +1 N—l — N(1 — C)

 Bias enlarges as node number, N, increases

« Denser graph connectivity, higher p,, increases bias

« For extremely large or small sensitive attribute homophily
coefficient, i.e. e, ->1/0, bias increases!

[1] Jiang, Zhimeng, et al. “Topology matters in fair graph learning: A theoretical pilot study.” Arxiv, 2023.
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Edge Distribution of Real-World Networks

Pokec_n Pokec_z

Number of intra-edges is significantly
larger compared to number of inter-edges

—— Different
—— Same

For real-world networks, .. 1, which leads to enhanced
bias based on entropy analysis!

Balanced inter- and intra-edges is critical for real-world
applications!

[1] Jiang, Zhimeng, et al. “Topology matters in fair graph learning: A theoretical pilot study.” Arxiv, 2023.
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Overview

Mean-discrepancy analysis
[Li, Peizhao, et. al., ICLR, 2021]
[Kose, O. Deniz, et. al., Arxiv, 2023]

Correlation-based analysis
[Kose, O. Deniz et. al., TNNLS, 2023]

Entropy-based analysis
[Jiang, Zhimeng, et al., Arxiv, 2023]

Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis
[Ma, Jiaqi, et. al., NeurIPS, 2021]

Gradient-based analysis
[Kang, Jian et. al., WWW, 2022]
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PAC-Bayesian Analysis [

« [1] derives a PAC-Bayesian analysis for the generalization
ability of GNNs on node-level tasks with non-IID
assumptions

- Bias measure: Accuracy disparity on test set between
different sensitive groups

[1] Ma, Jiaqi, et al. “Subgroup Generalization and Fairness of Graph Neural Networks.” In NeurIPS, 2021.
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PAC-Bayesian Analysis: Intuitions

« Generalization of trained model on a subset of test nodes is
related to geodesic distance between training and test nodes

 Selection of training set for a similar generalizability on each
group 1n test set

Train Set
Test Set

[1] Ma, Jiaqi, et al. “Subgroup Generalization and Fairness of Graph Neural Networks.” In NeurIPS, 2021.
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Subgroup Generalization Bound for GNNs

e« Theorem [1:

- Sy 7 b L ||W| 2/L LC(2B,,) L
/:%L(h/) S ;jyr<h)+0 <CK€m + (7/é)21/|1|;|;0|||§ (em) / + |SO|}—2a _|_ |801|2a ln (,71/L(;

« Upper bound on the generalization error of trained classifier for any
subgroup in terms of data distribution- and model-related parameters

¢, 1s useful for a fairness-aware training data selection

Distance to

€m = MaXjcgs,, MiNcs,, z; — ZjH2 training set

aggregated representation for node i

« There is a better generalization guarantee for subgroups that are
closer to the training set
e Bias for subgroups that are far away from the training set

[1] Ma, Jiaqi, et al. “Subgroup Generalization and Fairness of Graph Neural Networks.” In NeurIPS, 2021.
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Training Set Matters

* Geodesic distance (length of the shortest path) between two

nodes is positively related to corresponding €.

» Test nodes with larger geodesic distance to the training set tend to suffer
from lower accuracy

0.850
0.825 U
0800{ . n
0.775

orso| B A " Bars labeled 1 to 5 illustrate test accuracy for subgroups

th
0.725 n

o00| [LHIH A with increasing geodesic distance to training set.

0.675
0.650

12345 12345 12345 12345 12345
GCN GAT SGC  APPNP  MLP

 Selection of training set plays an important role on fairness

« An unevenly selected training set, leaving part of the test nodes far
away, may cause a large accuracy disparity
« Can guide a fairness-aware training set selection strategy

[1] Ma, Jiaqi, et al. “Subgroup Generalization and Fairness of Graph Neural Networks.” In NeurIPS, 2021.
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Overview
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[Li, Peizhao, et. al., ICLR, 2021]
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[Ma, Jiaqi, et. al., NeurIPS, 2021]
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[Kang, Jian et. al., WWW, 2022]
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Gradient-based Analysis [

- Rawlsian Difference Principle: achieves equality by
maximizing the welfare of the worst-off groups

 Bias measure ['): Variance of losses corresponding to different

sensitive groups
« A mathematical formulation for Rawlsian principle

 Analysis technique: find root cause of bias by analyzing

mathematically gradient of loss wrt weight parameters
« Key component in training is gradient

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Degree-related Bias

* [1] focuses on degree-related bias
* GNN is often biased towards benefiting high-degree nodes

20 30 a0 50
Degree

* Question: why the loss of a GNN varies among nodes with
different degrees after training?

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Gradient-based Analysis: Intuitions

« Degree of a node effects its importance on the updates of
weights during training

« Can be solved by equalizing each degree to a constant
« Normalized adjacency matrix

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Gradient Analysis for GNNs

gradient of loss wrt weight matrix of I-th GNN layer

?
. oJ n ~yp(row) n ~y(col)
Theorem [1] oW — ijl deg(])IJ = ZiZl deg(z)IZ
I§rOW) _ (H(ll_l)[j’ ;])T Eimppr () [&E‘Z—{[z]}% row-wise influence matrix of node j

Input node representations to [-th GNN layer

col — ‘ T
Iz(' ) <EijT(i> HUD[5,:]) % —| column-wise influence matrix of node i

Probability distribution on the neighborhood of node i

EO — AHC-DW®
A=D:(A+I)D:

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Guidelines for Degree-Bias Mitigation

n . row n . col
Theorem [ ;27 =577 deg(j)I"*") = 37| deg(i)I*""

 This analysis shows that node degrees serve as importance

scores of node influence matrices for corresponding gradient

« Higher node degree implies more importance on the gradient
» Provides explainability for degree-related bias

« Solution: Normalize adjacency matrix such that each node

has equal importance in updating the weight parameters
* Rows and columns of A should sum up to a constant
« [1] employs an iterative algorithm (Sinkhorn-Knopp algorithm) to
balance A for a constant degree for each node

y = Avg. Acc.
y = Avg. Acc.

y =00034x+0.7360] | ° y = 0.0023x + 0.8220
4’0 0 Y y 30 4‘0

50 20 50
X = Degree

20 30
X = Degree

(a) GCN (b) RaAwLsGCN-Graph

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Conclusions

« Multiple studies demonstrate the sources of bias via

following different analysis techniques

- Improves explainability aspect of fairness-aware ML on graphs
« Essential for large-scale deployment of learning algorithms

* Provided theoretical results can guide novel fairness-aware
algorithm design

* Open problems
« Multiple, non-binary sensitive attributes
« Different aggregation schemes
« Less restrictive assumptions on data distribution

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives
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Node Embeddings

« Mappings into a low-dimensional space
* Protect similarities in network structure & nodal features

« Different approaches based on different similarity definitions
* SOTA: GNN-based approaches

« Can be employed in several downstream tasks
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*Figure is modified from snap-stanford.github.io
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Bias in Node Embeddings

 Bias in nodal features will be encoded in node embeddings

« Aggregate information from neighbors—— node embeddings

Input Graph: G

AN,

El inter-edges |§| s=0
El intra-edges |§] s=1

|§]s=0 |§| s=1

« Neighbors generally with same sensitive attributes
« Embeddings correlated with sensitive attributes
« Bias in graph structure propagated towards node embeddings

 Intertwined bias from both nodal features and graph structure
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Overview

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
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Optimization with Regularization

Solution space
Unfair, ’
T
< Fair

Input graph

I . ' Fair node
[Algorlthm] { embeddings

Fairness

[
I |
! [regularization J :

e e e B

 Bias mitigation:

L = Lutitity + ALsair

—

Similarity of Node Embeddings

Distribution of Node Embeddings
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Optimization with Regularization

Solution space
Input grap Unfiir, 2
- Fai

| . I
I Fairness I
; [regularization ] :

— o o ]

 Bias mitigation: £ = L1ty

Node embedding matrix

embeddings

-[Algorithm] -L Fair node J

—

Similarity of Node Embeddings
+ AL fair 7

T

e [1]:  Ljair :==Tr (H'LgH)

Individual fairness-based regularization:
Similar embeddings for similar nodes

l

Laplacian matrix of similarity

matrix

[1] Kang, Jian, et al. “Inform: Individual fairness on graph mining.” In SIGKDD, 2020.
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Optimization with Regularization

Solution space

Input grap Unfair, ©
-~ Fai
-[Al orithm] — el el
e 3 embeddings

| . I
I Fairness I
; [regularization ] :

— o o ]

- Bias mitigation: £ = Lysiity + AL fair Similarity of Node Embeddings

Prob. node i is more similar to node j than
Cross-entropy loss || hode m based on node embedding similarity

1 Ranking based individual fairness:
o [1]: Lrair = ZZ Zj . Log(Pjm, Pjm) Rankings provided by oracle similarity
’ i matrix and node embeddings consistent

Prob. node i is more similar to node j than node m based on oracle similarity matrix

[1] Dong, Yushun, et al. “Individual fairness for graph neural networks: A ranking based approach.” In KDD, 2021.
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Optimization with Regularization

Solution space

Input grap Unfair, ©
-~ Fai
-[Al orithm] — 7 meek
e 3 embeddings

| . I
I Fairness I
; [regularization ] :

— o o ]

- Bias mitigation: £ = Lysiity + AL fair Similarity of Node Embeddings

# sensitive groups

5 5 Group disparity of individual fairness:
o [1]: Lrair = Z;SQIKQSG (% — 1) + (% — 1) Similar individual fairness level for
’ f : each sensitive group

Individual unfairness of embeddings in group g based on Lipschitz condition.

[1] Song, Weihao, et al. “GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks.” In KDD, 2022.
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Optimization with Regularization

Solution space

Input grap Unfair, ©
-~ Fai
-[Al orithm] — 7 meek
i 3 embeddings

| . I
I Fairness I
; [regularization ] :

— o o ]

« Bias mitigation: £ = Lttty + AL £as
5 bty fasr Distribution of Node Embeddings

Distribution of node embeddings from sensitive group 0

) Group fairness:
* [1] Efa,ir = DiW (fo, fl) Brings distributions of node embeddings
from different sensitive groups closer

Squared quadratic Wasserstein distance

[1] Fan, Wei, et al. “Fair Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein Distance.” In ICDM, 2021.
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Optimization with Regularization

Solution space

Input grap Unfair, ©
-~ Fai
-[Al orithm] — 7 meek
i 3 embeddings

| . I
I Fairness I
; [regularization ] :

— o o ]

« Bias mitigation: £ = Lttty + AL £as
5 bty fasr Distribution of Node Embeddings

Sample mean of embeddings from sensitive group O:
Governed by learnable parameters of a novel normalization layer

T 0 N2 Group fairness:
* [1]: Lfair = HM( ) — H( )HQ Brings distributions of node embeddings
from different sensitive groups closer

[1] Kose, O. Deniz, et al. “Fast& Fair: Training Acceleration and Bias Mitigation for GNNs.” In TMLR, 2023.
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Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
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Adversarial Learning

Objective of prediction

Input graph  Algorithm

Embeddin
[Generatm}‘ —HH DOVI::I’C(I:am}

Predict S ] i

. Indistinguishable
 Two main components:

* Generator: generate node embeddings for downstream tasks

« Discriminator: distinguish the embeddings between demographic subgroups

 Downstream task —— node classification [

[1] Dai, Enyan, et al. “Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information.” In WSDM, 2021.
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Adversarial Learning

Sensitive
Attributes
o ‘ Gender D
’I' ‘ Gender
A . A D
% —> ‘ . Occupation *@ Occupation
=
D
‘ Age Age
Node Filtered

Input Graph Embedding  Filters Embedding Discriminators

« Two main components:
* Generator: generate node embeddings for downstream tasks

« Discriminator: distinguish the embeddings between demographic subgroups

 [1] considers multiple sensitive attributes

[1] Bose, Avishek, et al. “Compositional fairness constraints for graph embeddings.” In ICML, 2019.
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Adversarial Debiasing for Graphs

Fair Feature View Generation Adversarial Training

Gumbel Softmax
X~ Po, (- 1X)

Y — L,
t £)
Classifier cg_
J
D
Encoder fy f
J
v N
Discriminator dg,

J

X f
N
, H \
e
Race Height Skin  Age ‘
Channel Masker E (4) E

&>®

—»Ld

 Via adversarial learning, generate fair views of input graph
* Generate node embeddings based on fair graph views
« Learn feature masks to prevent sensitive information leakage (']

« In addition to feature mask, re-wire adjacency matrix [2!

[1] Wang, Yu, et al. “Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage.” In KDD, 2022.
[2] Ling, Hongyi, et al. “Learning Fair Graph Representations via Automated Data Augmentations.” In ICLR, 2023.
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Overview

Optimization with Adversarial
regularization learning

Graph data
augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal
projection

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives

Bayesian
debiasing




Graph Data Augmentation

Node
embeddings

* Graph data augmentation: Corrupt graph structure and/or

nodal features
* Introduced for better robustness
« Can be used to eliminate the bias amplifying factors in graph
structure and nodal features

« Input augmented graph for fair node embeddings
« Hand-crafted, heuristic edge augmentation & feature masking
« Theory-based augmentation design
* Automated augmentation
« Counterfactual fairness-based augmentation design

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Observations for Sources of Bias

- Biased graph structure
* Clear community structure between two

groups of nodes with different sensitive attribute o o *
(i.e., yellow and blue) g ...‘o * "o
.. @ » o © .
@ ] ... S
- Biased nodal features %o

« Features correlated with sensitive attributes lead
to intrinsic bias

« Possible solutions
« Edge augmentation: Balance inter/intra edges
» Feature masking: Mask features highly correlated with sensitive attribute

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Edge Augmentation for Group Fairness

Input graph

-
I
I
1
I

' [Algorithm] Node
embeddings

« Group fairness
« Intuitional edge deletion designs based on observations for sources of
structural bias [t} [2]. [3]
« Hand-crafted edge deletion strategies for balanced inter and intra edges

!

Reduce bias in graph structure

O :
-
: ! O‘ :
2z \ . S I8
LI ~
~
’
’ ’
~ ’ ’
S .
~ »
- [
1 1 7
1 % ’ [ ’
[ N ’ e
r’ o ~
&= ’ ~ >
~,
Y \
\
i O ”

S e
1
“ o 1 : -
[1] Kose, O. Deniz, et al. “Fair Contrastive Learning on Graphs.” In TSIPN, 2022.

[2] Kose, O. Deniz, et al. “Fairness-aware Adaptive Network Link Prediction.” In EUSIPCO, 2022.
[3] Spinelli, Indro, et al. “Biased edge dropout for enhancing fairness in graph representation learning.” In TAI, 2021.
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Feature Masking for Group Fairness

Input graph

[Algorithm]‘[ Node ]
embeddings

« Group fairness

- Hand-crafted feature masking strategies based on observations for
sources of nodal feature bias [1 2]

« Intuition: features correlated with sensitive attributes propagate bias

Mask correlated features with higher probabilities

[1] Kose, O. Deniz, et al. “Fair Contrastive Learning on Graphs.” In TSIPN, 2022.
[2] Kose, O. Deniz, et al. “Fairness-aware Adaptive Network Link Prediction.” In EUSIPCO, 2022.
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Theory-based Augmentation

Input graph

[Algorithm]‘[ Node ]
embeddings

» Group fairness

« [1] theoretically identifies bias amplifying factors in mean aggregation

« Manually designs feature masking, node sampling, edge augmentation
strategies [
« Each augmentation targets different bias amplifying terms
« Augmentations minimize the corresponding bias factors

[1] Kose, O. Deniz, et al. “Demystifying and Mitigating Bias for Node Representation Learning.” In TNNLS, 2023
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Automated Augmentation for Group Fairness

Input graph

Node
embeddings

« Group fairness
« Instead of manual design, optimize augmentations with a fairness loss

« Automated augmentations on nodal features and graph structure [

« Fairness loss: Wasserstein distance between node embeddings’ distributions
from different sensitive groups

Node i 0(s=0 Reachability from 0 to H hq i
@ Node in group 0 (s=0) il i / J it s OPJ POI#M () Wasserstein distance
= T - ' minimization
& T ) ) 3
- = § 1 | }/ Vs 2 &
‘ Rl > e AN ek ”
& & |EllE 1/4>. xe B g )
X Nodes with s=0 é & Ty
. EEEEEEm . —
g ‘é’,’ =======, @ S Reachability from 0 to H hop J pJoint g- I
; Eg EEEEEEE = 1m -
P% =) ======= o > = @ Distributions
T[] ' \ ““““ from two groups
@ Node in group 1 (s=1) A y 5 ~—
A Nodes with s=1 — S

[1] Dong, Yushun, et al. “EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks.” In WWW, 2022.

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives




Augmentation for Counterfactual Fairness

[Algorithm] Node
embeddings

« Counterfactual fairness l': Node embeddings should be same
after flipping sensitive attribute, while everything else is fixed.

« Design l:
« Flip sensitive attributes in augmented graph
« Bring embeddings of original and augmented graph closer

(— ===\ Flip the value of (e —
\? - sensitive attribute \7 -

A%

 Intuition: Embeddings must be independent of sensitive attributes

[15] Agarwal, Chirag, et al. “Towards a unified framework for fair and stable graph representation learning.” In UAI, 2021.
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Augmentation for Counterfactual Fairness

[Algorithm]‘[ Node }
embeddings

* [1] extends counterfactual fairness definition on graphs
» The effect of sensitive attributes of neighbors

(T Tt (R T
T E| = | F
== ===

[1] Ma, Jing, et al. “Learning fair node representations with graph counterfactual fairness.” In WSDM,2022.
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Augmentation for Counterfactual Fairness

[Algorithm]‘[ Node }
embeddings

* [1] extends counterfactual fairness definition on graphs
» The effect of sensitive attributes of neighbors
« Causal effect from sensitive attributes on other variables like nodal
features and graph adjacency

\-&- /_‘.‘ sensitive attribute gl

(T e Flip the value of /-:&' e

[1] Ma, Jing, et al. “Learning fair node representations with graph counterfactual fairness.” In WSDM,2022.
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Augmentation for Counterfactual Fairness

[Algorithm] Node
embeddings

* [1] extends counterfactual fairness definition on graphs
» The effect of sensitive attributes of neighbors
« Causal effect from sensitive attributes on other variables like nodal
features and graph adjacency

- Automized augmentation to generate counterfactual subgraphs

for each node [1]
« Optimization via an adversarial loss

« Bring embeddings based on counterfactual subgraphs closer

[1] Ma, Jing, et al. “Learning fair node representations with graph counterfactual fairness.” In WSDM,2022.
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Overview

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
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Rebalancing: Path-based Rebalancing

Embedding Embedding
space space
Rebalancin
° d P .

T ®

>

Aim: similar embedding distributions for different sensitive groups

Method: Re-distribute weights of edges without topology change

Group fairness:
« Path-based rebalancing
« Edge-based rebalancing

Degree-based fairness: Re-weight existing edges

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Rebalancing: Path-based Rebalancing

Embedding Embedding
space space
Rebalancin
° d a -

T ®

>

« Aim: similar embedding distributions for different sensitive groups
« Method: Re-distribute weights of edges without topology change

« Group fairness: balanced weights for inter- and intra-edges
Path-based rebalancing for random walk-based embeddings [l [2]

[1] Rahman, Tahleen, et al. “Fairwalk: Towards fair graph embedding.” In IJCAI, 2019.
[2] Khajehnejad, Ahmad, et. al. “CrossWalk: Fairness-enhanced Node Representation Learning.” In AAAI, 2022.
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Rebalancing: Edge-based Rebalancing

Embedding Embedding
space space
Rebalancin
° d P .

T ®

>

« Aim: similar embedding distributions for different sensitive groups
« Method: Re-distribute weights of edges without topology change

« Group fairness: balanced weights for inter- and intra-edges
- Edge-based rebalancing: Re-distribute weights of edges by optimizing
for dyadic loss [1]

l

Similar probabilities for inter and intra edges

[1] Li, Peizhao, et al. “On dyadic fairness: Exploring and mitigating bias in graph connections.” In ICLR, 2021.
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Rebalancing for Degree-based Fairness

Embedding Embedding
space space
Rebalancin
° d P .

T ®

>

« Aim: similar embedding distributions for different sensitive groups
« Method: Re-distribute weights of edges without topology change

« Degree-based fairness: balanced weights for a constant degree !

|

Rebalances effect of each node in optimization

[1] Kang, Jian, et al. “RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Networks.” In WWW, 2022.
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Overview

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
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Orthogonal Projection

* Node embeddings are on a s o
hyperplane orthogonal to LT iR .
that of sensitive attributes’ I ‘&W
embeddings 2l

« enforce linear independence sensitive i ®
between the two embedding attributes edge data [ m

b 4
spaces
1

 Linear debiasing approach weights

Sensitive attributes’ Node embeddings
embeddings )

[1] Palowitch, John, et al. “Debiasing Graph Representations via Metadata-Orthogonal Training.” In ASONAM 2020.
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Overview

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
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Bayesian Debiasing: DeBayes [

P(G)

G P(G|A)

oblivious
prior P b prior

’ “*. biased

1
i

+ evaluation ' training

» Developed for Bayesian node embedding learning

« Idea: model sensitive information in prior distribution of

graph as strongly as possible
* Node embeddings no longer need to represent sensitive information

 Use sensitive information-agnostic prior in evaluation

[1] Buyl, Maarten, et al. “DeBayes: a Bayesian Method for Debiasing Network Embeddings.” In ICML, 2020.
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Conclusions

* Node embeddings are powerful
« Carry information of structure and nodal features
« Facilitate several downstream graph-based tasks

« Essential to prevent bias propagation towards node embeddings

 Six main approaches based on different techniques
« Optimization with regularization
» Adversarial learning
« Graph data augmentation
« Re-balancing
* Orthogonal projection
« Bayesian debiasing

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives
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User Fairness in Recommender System

User Fairness: the recommendation quality for

different users should be similar.
Example: Active/inactive users

Simpsons Index of Diversity Score distribution

0 ‘
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Simpsons Index of Diversity Score

Statistics of Amazon Beauty dataset [1]

Rated /; v 141 Inactive User
3 High v i i Active User
Active
user Rated = 10
High ==y B ¥ 'N‘ o
| ax
o 8-
S
o
Rated 9 6 -
High =) [TH
{7y . 4 -
Rated A" ST Aid |
High ‘ '- i d -
>’J =i 54
Inactive
S Rated W

user ; ‘i e \’ ‘- I e

[1] Fu, Zuohui, et al. “Fairness-aware explainable recommendation over knowledge graphs.” In SIGIR, 2020.
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Fulfilling User Fairness

Adversarial learning-based method: avoid

delivering news with biased service quality towards
certain demographic subgroups.

X News

G Attribute SIS L, Lgr | Recommendation

o Prediction Loss Loss ok Loss
s 3 ; y }7 The goal of the adversary:
. A excluding the sensitive
Click 3 3
Unified Use Scoring (rraining) ] information from user
Embeddin i
Atrbute i Attribute Fairness-aware embeddlngs'
Biedictor DiEciminator News ranking score
@ i 4 \ Adversarial i
ub ud e’ Loss A
L Click [:[
. D:E b Scoring (Test) ‘D i
Blas—aware- User Orthogonality Bias-free User News z Z
Embedding Regularization Loss Embedding Embedding
Bias-aware Bias-free News u
User Model User Model Model W Attribute
K Discriminator
[ews | ewe ] K e D€ fvews
D, [|&&) D,[|&&) -~ Dn(&E| la=
Clicked News Candidate News

The architecture of FairRec [1]

[1] Wu, Chuhan, et al. “Fairness-aware news recommendation with decomposed adversarial learning.” In AAAT, 2021

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives




Popularity Fairness in Recommender System

Popularity Fairness: popular instances should not be

over-emphasized compared with other instances.
Example: filter bubble problems.
Example measurement [

] d;;
Qfairness = Z(Ai,j —= ) M(vz’)7 M(Uj )|)
AE| — / 2|1E
6] N/
/ gi%reef of group membership for user i and j
Total edge Kronecker delta
number function

[1] Masrour, Farzan, et al. "Bursting the filter bubble: Fairness-aware network link prediction." In AAAI, 2020.
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Popularity Fairness in Recommender System

Popularity Fairness: popular instances should not be

over-emphasized compared with other instances.
Example: filter bubble problems.
Example measurement [

A lower value indicates more inter-group edges, which
implies that those less-popular instances are encouraged
to connect with other instances.

More biased: Less biased:

[1] Masrour, Farzan, et al. "Bursting the filter bubble: Fairness-aware network link prediction." In AAAI, 2020.
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Popularity Fairness in Recommender System

(1) Regularization-based method: mitigating bias by
adding a regularization term, which is relatively easy to use.

An example [1] of regularization for popularity fairness:

Zfair — CorrP(f'—I-) p-l—)

/N

the vector of predicted the vector of the feedback number
relevance scores for (i.e., popularity) received by the
positive user-item pairs items in user-item pairs

This regularization relieves the effect that popular items tend to receive
higher relevance scores.

[1] Zhu, Ziwei, et al. "Popularity-opportunity bias in collaborative filtering." In WSDM, 2021.
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Popularity Fairness in Recommender System

(2) Edge Rewiring-based method: Based on link
prediction results, a proportion of links are rewired (i.e.,
flipped) in a greedy manner to achieve popularity fairness [,

O Edge
OO0 o Rewiring
O -0 o==——==
—O O
O o° /= o
O O———_—=

[1] Masrour, Farzan, et al. "Bursting the filter bubble: Fairness-aware network link prediction." In AAAI, 2020.
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Provider Fairness in Recommender System

Provider Fairness: items from different providers

should receive the same exposure rate to the customers.

« Example of metric 1: set a minimum exposure guarantee for
all providers and used the number of unsatisfied providers to

measure provider fairness [,

' ’ Satisfied providers
O O

Minimum exposure guarantee

‘ ‘ ‘ Unsatisfied providers

[1] Patro, Gourab K., et al. "Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms." In WWW, 2020.
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Provider Fairness in Recommender System

Provider Fairness: items from different providers

should receive the same exposure rate to the customers.

« Example of metric 1: set a minimum exposure guarantee for
all providers and used the number of unsatisfied providers to
measure provider fairness [,

« Example of metric 2: average number of providers appearing
in recommendations [2],

[1] Patro, Gourab K., et al. "Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms." In WWW, 2020.
[2] Liu, Weiwen, et al. "Personalizing fairness-aware re-ranking." arXiv preprint arXiv:1809.02921 (2018).
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Provider Fairness in Recommender System

Provider Fairness: items from different providers

should receive the same exposure rate to the customers.

« Example of metric 1: set a minimum exposure guarantee for
all providers and used the number of unsatisfied providers to

measure provider fairness [,

« Example of metric 2: average number of providers appearing
in recommendations [2],

« Example of metric 3: measure both the user-item relevance
difference and item exposure rate difference between different
providers 31,

[1] Patro, Gourab K., et al. "Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms." In WWW, 2020.
[2] Liu, Weiwen, et al. "Personalizing fairness-aware re-ranking." arXiv preprint arXiv:1809.02921 (2018).
[3] Boratto, Ludovico, et al. “Interplay between upsampling and regularization for provider fairness in recommender systems.” In UMUALI, 2020.
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Fulfilling Provider Fairness

Rebalancing-based method: upsampling interactions
between users and items from minority providers L1,

N\
Majority Provider @"D Minority Provider
User . User -
& ™ L2 ﬁ &y 5
N~ o = = ____3
‘ o) 690 —————— ~ S 4
m ) TN S - Q§
Q§ BRAND ~. . &
= AN N\ I A P
Q@ BRAND §
N N & v Q
Before Upsampling After Upsampling

[1] Boratto, Ludovico, et al. "Interplay between upsampling and regularization for provider fairness in recommender systems." In UMUAI, 2021
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Marketing Fairness in Recommender System

Marketing Fairness: users are less likely to interact with
items whose marketing strategy is not consistent with their
identity.
« Example case: some gender-neutral items (e.g., armband) could
be marketed only with images of males.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Unfair
_____________________________________ Recommendations

Dominating

market loss,
market segment

unsatisfactory user experience,
social concerns,
etc.

Underrepresente
d market segment

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.
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Marketing Fairness in Recommender System

Marketing Fairness: users are less likely to interact with
items whose marketing strategy is not consistent with their
identity.
« Example case: some gender-neutral items (e.g., armband) could
be marketed only with images of females.

« Measurement: variance of recommendation errors for identity-
consistent and identity-inconsistent users 1],

identity- Recommendation Errors identity-

consistent Inconsistent
[«D]
N
% &
g &
3]
=
B
[av]
s
identity- identity-
. . Female Male .
1nconsistent consistent

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.
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Fulfilling Marketing Fairness

Regularization-based method [: add an additional term
to regularize the correlation between prediction errors and the
distribution of market segments.

LF = Z(Su,i - ru,i)z + aLcorr.

1 2
between-segment var.: ymarket) — _—_ | Dm.nl (Em,n,-—€
| Dl Z ( )

within-segment var.: y(market) — D] Z Z €u,i — €m,n, )2
error parity on user identity error parity on market segments mn uel,

& ze]'
Lo =@ Y o) V) | (markeny VD
AT, U(u.) (p ) U (market)’
N S

error parity on product image
y@) y@) y®) y®): merging market
segments within the same type of user
identity groups or product image groups.

[1] Wan, Mengting, et al. "Addressing marketing bias in product recommendations.” In WSDM, 2020.
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Social Fairness in Knowledge Graph

Social Fairness: knowledge graph embeddings could

encode historical social biases.
- Example case: bankers are males and nurses are female.
- Example of measurement: Distribution difference between the
prediction distribution and uniform distribution over all possible
sensitive feature values M.

A traditional stereotype: bankers are males, while nurses are females [2].

[1] Fisher, Joseph, et al. "Debiasing knowledge graph embeddings." In EMNLP, 2020.
[2] Zeng, Ziqian, et al. “Fair representation learning for heterogeneous information networks.” In AAAI, 2021.
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Social Fairness in Knowledge Graph

(1) Regularization-based method
Example: Use KL-divergence between the prediction distribution
and uniform distribution over all possible sensitive feature values .

Regularization term formulation:

® i Iossj Sp1 Spp, Target

Update' Freeze
g (i|personl

person2

catholic/ 0.5 0.3 0.33'

religion|| jewish [{)=0.2 0.4 0.33|Lg;

muslim 0.3 0.3 0.33

[1] Fisher, Joseph, et al. "Debiasing knowledge graph embeddings." In EMNLP, 2020.
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Social Fairness in Knowledge Graph

(1) Regularization-based method
Example: Use KL-divergence between the prediction distribution
and uniform distribution over all possible sensitive feature values .

(2) Adversarial Learning-based method
Example: Use a sensitive information filter to remove social bias
from the embeddings of human entities with a min-max game (2,

- Fiter | |  Discriminator ( :

Node Embedding Filtered Embedding

[1] Fisher, Joseph, et al. "Debiasing knowledge graph embeddings." In EMNLP, 2020.
[2] Arduini, Mario, et al. "Adversarial learning for debiasing knowledge graph embeddings." In SIGKDD, 2020.
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Fairness in Criminal Justice

Criminal justice: predict whether a defendant deserves
bail over a similarity network between defendants [/,

ol L

“The United States inarguably has a mass-incarceration
crisis, but it is poor people and minorities who bear its
brunt. Punishment profiling will exacerbate these
disparities—including racial disparities. It also confirms
the widespread impression that the criminal justice
system is rigged against the poor [21.”

[1] Agarwal, Chirag, et al. "Towards a unified framework for fair and stable graph representation learning." In UAI 2021.
[2] Bazelon, Emily. "Sentencing by the numbers." Open Society Institute 2 (2005).
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Fairness in Economics

Economics: default and credit risk prediction over the
network between bank clients [,

Economic Fairness

[1] Agarwal, Chirag, et al. "Towards a unified framework for fair and stable graph representation learning." In UAI 2021.
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Fairness in Social Networks

Social Networks:
« Information diffusion over social networks [1l.
« The gender gap on social media [21.
« Fair influence maximization on social networks [31.

[1] Balaji, T. K., et al. Machine learning algorithms for social media analysis: A survey. Computer Science Review, 2021.
[2] Dai, E., et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. In WSDM, 2021.
[3] Khajehnejad, M., et al. Adversarial graph embeddings for fair influence maximization over social networks. In IJCAI, 2020.
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Fairness in Health Care

Health Care: prevent people from HIV over real-world

social connections.
Example: in the HIV prevention domain, we wish to ensure that
members of racial minorities or of LGBTQ identity are not
disproportionately excluded from knowledge & resources I,

Knowledge
about HIV

[1] Tsang, Alan, et al. “Group-fairness in influence maximization.” In IJCAI, 2019.
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Summary on Fairness Notions

The taxonomy of fairness notions:

Different sensitive subgroups
bear fair share of interest.

Demographic Parity I—
Equality of Odds I —l Group Fairness l—
Equality of Opportuni I_
d e L v || Fairness Notionsin ] | Coun’gerfactual
Graph ML Fairness
Fairness Notions in Node Embedding Learning I—

Node Pair Distance-Based Fairness

— Individual Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

Recommender Systems

Degree-Related
Fairness Notions in Graph Clustering I_ Fairness

Application-
Specific Fairness

Knowledge Graphs

Fairness in Graph Mining: Metrics and Algorithms



Summary on Fairness Notions

The taxonomy of fairness notions:

Similar individuals should
receive similar outputs.

Node Pair Distance-Based Fairness

Demographic Parity I— /‘
— Individual Fairness
Equality of Odds Group Fairness
Equality of Opportunity I_
|__| Fairness Notions in | Count‘erfactual
Graph ML Fairness
Fairness Notions in Node Embedding Learning I—

Degree-Related

Fairness Notions in Graph Clustering I— Fairness ~oolicat
pplication-

Specific Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

|

Recommender Systems

Knowledge Graphs
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Summary on Fairness Notions

The taxonomy of fairness notions:

Node Pair Distance-Based Fairness

Demographic Parity I—
Equality of Odds I —l Group Fairness l—
Equality of Opportuni I_
d e L v || Fairness Notionsin ] | Coun’gerfactual
Graph ML Fairness
Fairness Notions in Node Embedding Learning I—

— Individual Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

Recommender Systems

Degree-Related
Fairness Notions in Graph Clustering I_ Fairness

Application-
Specific Fairness

Knowledge Graphs

Nodes with different degrees
should bear similar level of utility
from the graph mining model.

Fairness in Graph Mining: Metrics and Algorithms



Summary on Fairness Notions

The taxonomy of fairness notions:

The sensitive information should
not causally influence the outputs.

Node Pair Distance-Based Fairness

Demographic Parity I—
Individual Fairness
;Equality of Odds —l Group Fairness l—
N

Node Ranking-Based Fairness
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pplication-

Specific Fairness

Recommender Systems

Knowledge Graphs
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Summary on Fairness Notions

The taxonomy of fairness notions:

Node Pair Distance-Based Fairness

Demographic Parity I—
Equality of Odds I— Group Fairness

— Individual Fairness
Equality of Opportunity I_
|__| Fairness Notions in | Count‘erfactual
Graph ML Fairness
Fairness Notions in Node Embedding Learning I—
Degree-Related

Fairness Notions in Graph Clustering I— Fairness ~oolicat
pplication-

Specific Fairness

{

Recommender Systems:
(1) User Fairness
(2) Popularity Fairness
(3) Provider Fairness
(4) Marketing Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

|

Recommender Systems

Knowledge Graphs
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Summary on Fairness Notions

The taxonomy of fairness notions:

Node Pair Distance-Based Fairness

Demographic Parity I—
Equality of Odds I— Group Fairness

— Individual Fairness
Equality of Opportunity I_
|__| Fairness Notions in | Count‘erfactual
Graph ML Fairness
Fairness Notions in Node Embedding Learning I—
Degree-Related

Fairness Notions in Graph Clustering I— Fairness ~oolicat
pplication-

Specific Fairness

{

Knowledge Graphs:
(1) Social Fairness
(2) Path Diversity Fairness
(3) Popularity Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

|

Recommender Systems

Knowledge Graphs

Fairness in Graph Mining: Metrics and Algorithms



Mean-discrepancy Analysis

[ Mean-discrepancy analysis ] Entropy-based analysis

Correlation-based analysis

!
Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis

 Disparity between aggregated representations from different
sensitive groups

|Ev~y [Agg(v) | v € So] — Epay [Agg(v) | v € S1]ll;

« A measure for demographic parity for both link prediction and
node classification

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Correlation-based Analysis

Mean-discrepancy analysis Entropy-based analysis

[ Correlation-based analysis ]

Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis

e Features correlated with sensitive attributes lead to intrinsic bias

« Correlation between aggregated features and sensitive attributes

lpllr with p; = Corr(z. ;,s)

i-th aggregated feature

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Entropy-based Analysis

Mean-discrepancy analysis [ Entropy-based analysis ]

Correlation-based analysis

!
Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis Gradient-based analysis

« Mutual information between aggregated representations and
sensitive attributes

 For a tractable metric, upper bound mutual information

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



PAC-Bayesian Analysis

Mean-discrepancy analysis Entropy-based analysis

Correlation-based analysis

!
Analysis Techniques for
Understanding Bias in Graph ML

[ PAC-Bayesian analysis ] Gradient-based analysis

 Generalization ability of trained GNN on different sensitive groups

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



PAC-Bayesian Analysis

Mean-discrepancy analysis Entropy-based analysis

Correlation-based analysis

!
Analysis Techniques for
Understanding Bias in Graph ML

PAC-Bayesian analysis [ Gradient-based analysis ]

 Gradients of loss wrt weight matrices in GNN layers
« key component in training

n A (Trow n 1 (col
% =2 j=1 deg(J)I§- = 2 i—1 deg(Z)L(; )

 Explainability for degree-related bias

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Optimization with Regularization

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing

Solution space

Input graph Unfair,
-~ Fai
; Fair node
—) [Algonthm] — [ embeddings J

—— -y

I . |
| Fairness I
: regularization :

« Design fairness-aware regularizers to learn fair node embeddings

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Adversarial Learning

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing

Objective of prediction

Input graph  Algorithm

Embeddin

- Downstre am}
l tasks

Predict S ]

—— o o = —— = — -—— = - -

1
: [ Discriminator
1

Indistinguishable

* Node embeddings whose sensitive attributes cannot be inferred by
discriminator

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Graph Data Augmentation

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing

[Algorithm]’[ Node ]
embeddings

 Eliminate bias amplifying factors in graph structure and nodal
features via augmentation design

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Re-balancing

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing

1&1
3 3

1 @ 1

: 2
Rebalancing Kg

1 1
n n

« Re-balance weights of edges without topology change
« Balance inter and intra edges

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Orthogonal Projection

Optimization with Adversarial Graph data
regularization learning augmentation
W
-
Techniques for Fair Node Embedding Learning - qq‘m".vp . . n
P g e
li '
Re-balancing Orthogonal Bayesian sensitive . - o
projection debiasing attributes edge data ( P<§
7 7

D J_

weights

Sensitive attributes’ Node embeddings
embeddings .

« Ensure linear independence between node embeddings and
sensitive attributes’ embeddings

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Bayesian Debiasing

Optimization with Adversarial Graph data
regularization learning augmentation

Techniques for Fair Node Embedding Learning

Re-balancing Orthogonal Bayesian
projection debiasing
P(G)

(o'

oblivious -7/ biased
prior HaL st prior

| . . I
' evaluation ‘ training

* Model sensitive information in prior distribution of graph
* Node embeddings no longer need to represent sensitive information

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives 194



Challenge 1: Insufficient Fairness Notions

« The Insufficiency of fairness notions

Can existing fairness notions help to avoid
all cases where people may feel unfair?

Node Pair Distance-Based Fairness

Demographic Parity I—
Individual Fairness
Equality of Odds : Group Fairness
Equality of Opportunityj;'- Countorfactual
B Fairness l
Fairness Notions in Node Embedding Learning I—
Degree-Related
Fairness Notions in Graph Clustering I— Fairness Application-

Specific Fairness

Node Ranking-Based Fairness

Fairness Notions in Graph Clustering

Fairness Notions in
Graph ML

|

Recommender Systems

Knowledge Graphs
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Challenge 2: Multiple Fairness Notions

« The insufficiency of fairness notions

 Fulfilling multiple fairness notions

How to achieve multiple types of fairness?
Are some of the existing fairness notions in conflict with each other?

If we could achieve multiple types of fairness, will people get a stronger
sense of fairness? If not, what will be beneficial for social good?

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Challenge 3: Fairness and Utility Tradeoff

« The insufficiency of fairness notions
 Fulfilling multiple fairness notions

« Balance fairness and model utility

How to achieve fairness at low or no cost of utility?

S
)2 Feasible
objective

space
Pareto-

optimal
front

-
»
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Challenge 4: Robustness of Fairness

The insufficiency of fairness notions

Fulfilling multiple fairness notions

Balance fairness and model utility

Enhance robustness of fairness

" Involved
— L Individuals

Example: there are malicious
attackers whose goal is to
induce bias in the decisions
made by the government

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Challenge 4: Robustness of Fairness

« Enhance robustness of fairness

- Example: there are malicious attackers whose goal is to
induce bias in the decisions made by the government

Involved
Individuals

How would existing fairness-aware algorithms perform in terms of bias
mitigation under malicious attack?

How to achieve better robustness in terms of fairness?

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives




Challenge 5:
Unavailable/Missing Sensitive Information

« The insufficiency of fairness notions
 Fulfilling multiple fairness notions

« Balance fairness and model utility

« Enhance robustness of fairness

 Bias mitigation strategy design without sensitive information

How to design fairness-aware algorithms with missing sensitive
information?

How to define fairness when sensitive information is not fully available?

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives



Challenge 6: Privacy

« The insufficiency of fairness notions

 Fulfilling multiple fairness notions

« Balance fairness and model utility

« Enhance robustness of fairness

 Bias mitigation strategy design without sensitive information
* Prevent sensitive information leakage

How much sensitive information can be retrieved in existing fairness-aware
training strategies by different adversaries?

How to mitigate sensitive information leakage while training fair models?

Fairness in Graph Machine Learning: Recent Advances and Future Prospectives
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Fairness in Graph Mining: A Survey

‘Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li
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‘Spectcaly,wo.

1 INTRODUCTION

Goophrctond das s et s bk

applicar E-commerte (102, [12], heath <

153, wthc forecusting [72), 100, and drug discovery (15,

[172), In recent years, a number of graph mining algorithms
gain a deet

ith achieving fairness in the context of in-

71 dependentand ensealy itubuted (1) dote n.vmm,

fairness in graph mining can be non-trivial due to twy
main challnges. Th firstchallenge i o formulate propee

data, These algorithms have shown promising performance
on graph analytical tasks such as node classification (53],
86), [161] and link prediction [4], [103), [109], contributing
o great advances in many graph-based applicaions.

Despite the success of these graph mining algorithms,
most of them lack faimess considerations. Consequently,
they could yield discriminatory results towards certain pop-
ulations when such algorithms are exploited in human-
centered applications [80]. For example, a social network-
based job recommender system may unfavorably recom-
mend fewer job opportunities to individuals of  certain
‘gender [97] or individuals in an underrepresented ethnic
group (150 With the widespread usage of graph min
ing algorithms, such potential discrimination could also
exist in other high-stake applications such as disaster re-
sponse [159], criminal justice [3) and loan approval (1%,
In these applications, critical and lifechanging decisions
are often made for the individuals involved. Therefore,
how totackle unfaimes s in graph mining algoritins
naturally becomes a cru

al probles

k. St of Do Seecs Uity o
Virgini Us.

he criteria to determine
Uniamco L o) Alhough vstamount o yodtoral
algorithmic faimess notions have boen propo
on iid. data [42), [111), they are unable to reflect the bias
exhibited by the relational information (L. the topology)
in graph data. For example, the same population can be
connected with different topologies as in Fig. 1aland 1b,
whee each rode presents an Idivdual. nd the cole
demographic

oo e pender, Compored i e proph tope.
oy in Fig. 1, the topology in Fig, 1b/has more intra-group.
edges than inter-group edges. The dominance of intra-group
edges in the graph topology is a common type of biss
existing in real-world graphs [39), [41], [70], which cannot
be captured by traditional algorithic fairness notions. The
socond challenge is to prevent the graph mining algorithms.
from inheriting; the bias exhibited in the input relational
information [41], [112], [148], [160]. We present a toy ex.
ample to demanstrate ho propagation
mechanism in Graph Neural Networks (GNNs) [64], [85],
[161] induces bias to the output node e
biased graph topology in Fig. 1c, In the input
Rode features are uniformly distributed. However, when the
information propagation is performed on a biased topology
as in Fig. 1b, the information received by nodes in different
subgroups could be biased [41], leading to a biased embed:
ding distribution in the output s

There has been emerging research interest in fulfiling
algorithmic faimess in graph mining. Nevertheless, the
studied faimess notions vary across different works, which
can be confusing and impede further progress. Meanwhile,
different techniques are developed in achieving various
fairmess notions. Without a ciear understanding of the
responding mappings, future fair graph mining algorithm
design can be difficult. Therefore, 3 systematic survey of

iy

Our survey paper has
been released on arxiv.

Dehias.

PyGDebias: 10+ popular

algorithms and 20+
graph datasets.

Collected Algorithms

follows.
Methods Debiasing Technique
FairGNN [2] Adversarial Learning
EDITS [3] Edge Rewiring

Fairwalk [4] Rebalancing

CrossWalk [5] Rebalancing
UGE [6] Edge Rewiring
FairVGNN [7] Adversarial Learning

FairEdit [8] Edge Rewiring

NIFTY [9] Optimization with Regularization
GEAR [10] Edge Rewiring
InFoRM [11] Optimization with Regularization
REDRESS [12] Optimization with Regularization
GUIDE [13] Optimization with Regularization

RawlsGCN [14]

Rebalancing

[=]

13 different methods in total are implemented in this library. We provide an overview of their characteristics as

Fairness Notions
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group Fairness
Group/Counterfactual Fairness
Group/Counterfactual Fairness
Individual Fairness
Individual Fairness
Individual Fairness

Degree-Related Fairness

Paper & Code
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]
[Paper] [Code]

[Paper] [Code]
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n Graph Machine Learning: Recent. Advances and
Future Prospectives

Time: 10:00 AM - 1:00 PM (PDT), Tuesday, August 8.
Location: Room 202B, Long Beach Convention & Entertainment Center, Long Beach, CA.

Website of our tutorial

Thanks for listening!
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