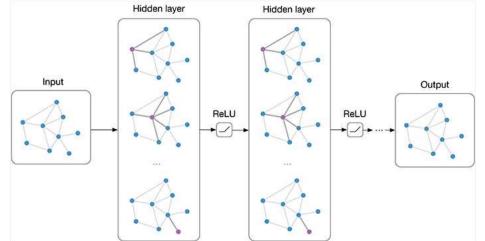
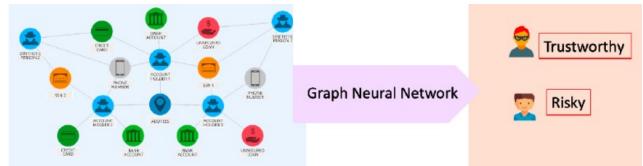

GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks

GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks

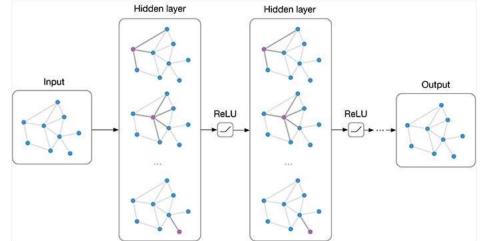
Graph neural networks


- Leverage graph structure
- Direct learn representation for target task

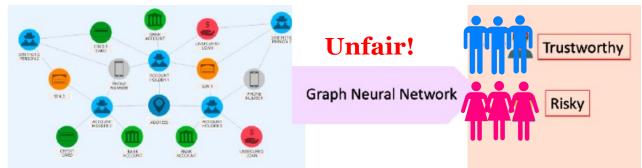

• Applications: social network modeling, decision making

Graph neural networks

- Leverage graph structure
- Direct learn representation for target task



• Applications: social network modeling, decision making



Graph neural networks

- Leverage graph structure
- Direct learn representation for target task

• Applications: social network modeling, decision making



Fairness

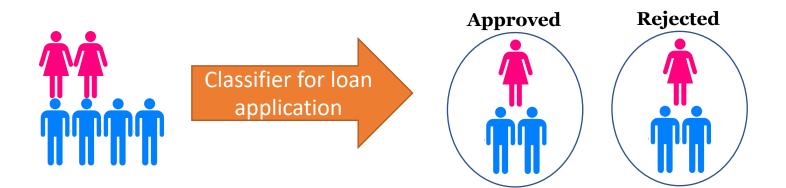
- Group fairness
- Individual fairness

Fairness

- Group fairness
- Individual fairness

Different groups defined by protected attributes receive fair share of interests

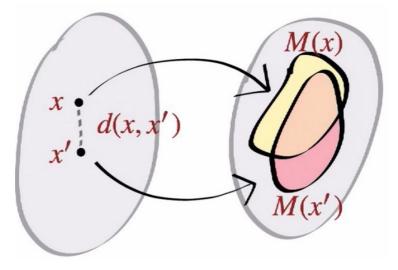
Individual fairness


Similar individuals receive similar treatments or outcomes

Group Fairness: Statistical Parity

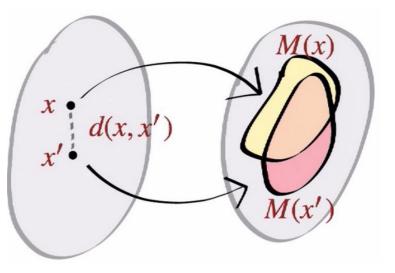
• People from **different groups defined by protected attributes** have equal probability of receiving certain outcomes

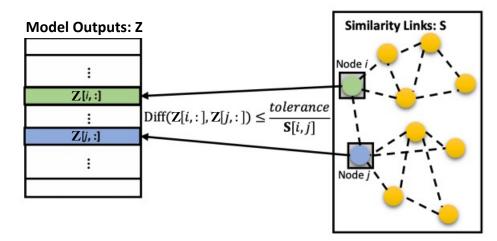
$$P(\hat{Y} \mid A = 0) = P(\hat{Y} \mid A = 1)$$


• Example:

Individual Fairness

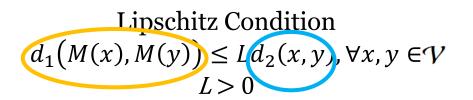
- Giving similar individuals similar outcomes
- Formulation [1, 2, 5]

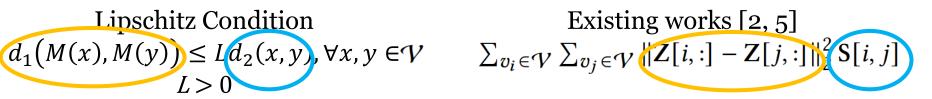

Lipschitz Condition $d_1(M(x), M(y)) \le Ld_2(x, y), \forall x, y \in \mathcal{V}$ L > 0

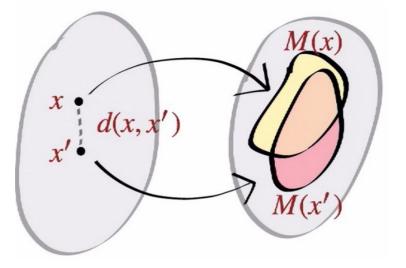

Individual Fairness

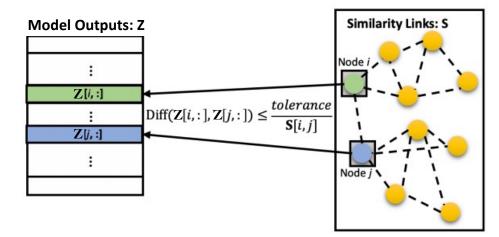
- Giving similar individuals similar outcomes
- Formulation [1, 2, 5]

Lipschitz Condition $d_1(M(x), M(y)) \le Ld_2(x, y), \forall x, y \in \mathcal{V} \qquad \sum_{v_i \in \mathcal{V}} \sum_{v_i \in \mathcal{V}} \|Z[i, :] - Z[j, :]\|_2^2 S[i, j]$ L > 0

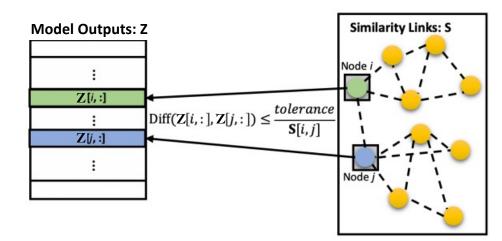



Existing works [2, 5]



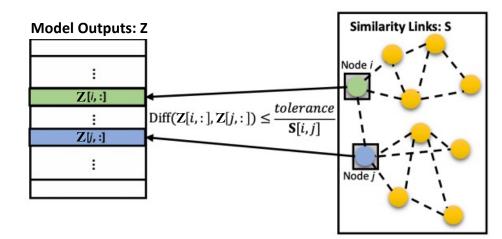

Individual Fairness

- Giving similar individuals similar outcomes
- Formulation [1, 2, 5]



Deeper understanding of existing work

• Existing works [2, 5] utilize the equation on the right to measure individual (un)fairness


Existing works [2, 5] $\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$

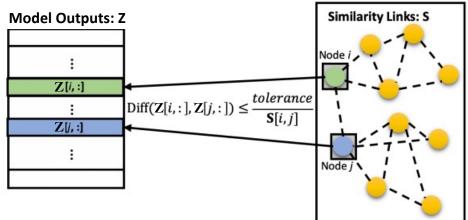
Deeper understanding of existing work

- Existing works [2, 5] utilize the equation on the right to measure individual (un)fairness
- They minimize this sum to optimize individual fairness

Existing works [2, 5] $\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$

Deeper understanding of existing work

- Existing works [2, 5] utilize the equation on the right to measure individual (un)fairness
- They minimize this sum to optimize individual fairness


Why does it work?

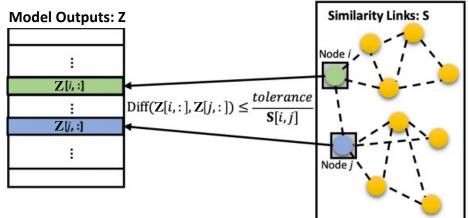
• Constraining scalar for node pair v_i, v_j

$$\epsilon_{i,j} = \frac{d_1(M(v_i), M(v_j))}{d2(v_i, v_j)} = ||\mathbf{Z}[i, :] - \mathbf{Z}[j, :]||_2^2 \mathbf{S}[i, j]$$

smaller->fairer

Existing works [2, 5] $\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$

Deeper understanding of existing work


- Existing works [2, 5] utilize the equation on the right to measure individual (un)fairness
- They minimize this sum to optimize individual fairness

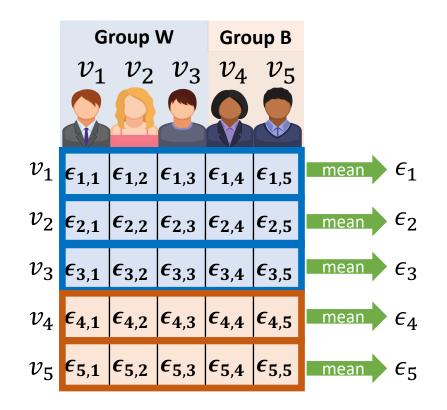
Why does it work?

• Constraining scalar for node pair v_i, v_j

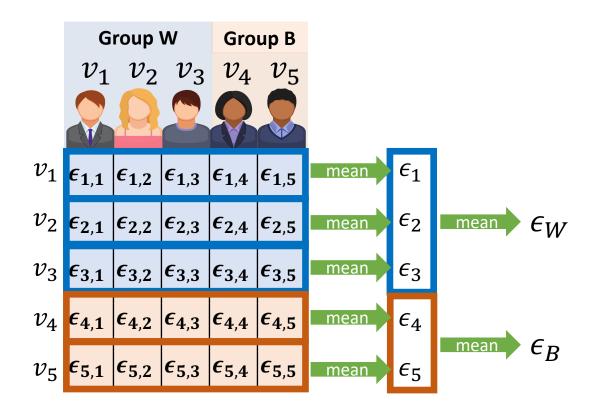
$$\epsilon_{i,j} = \frac{d_1(M(v_i), M(v_j))}{d2(v_i, v_j)} = ||\mathbf{Z}[i, :] - \mathbf{Z}[j, :]||_2^2 \mathbf{S}[i, j]$$

Existing works [2, 5] $\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$

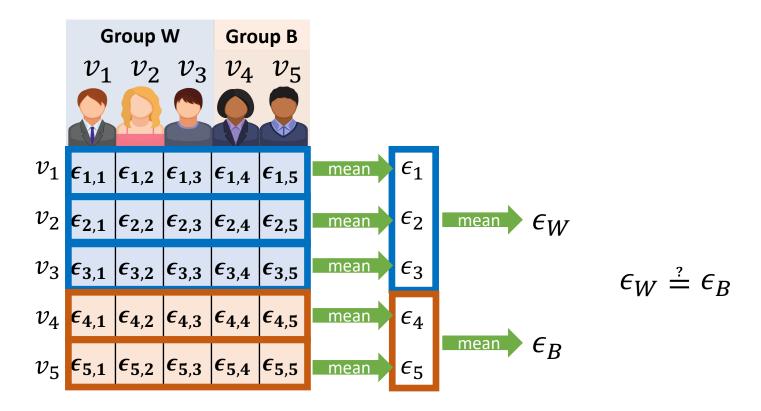
Equivalent to minimizing average constraining scalar **for the entire dataset**

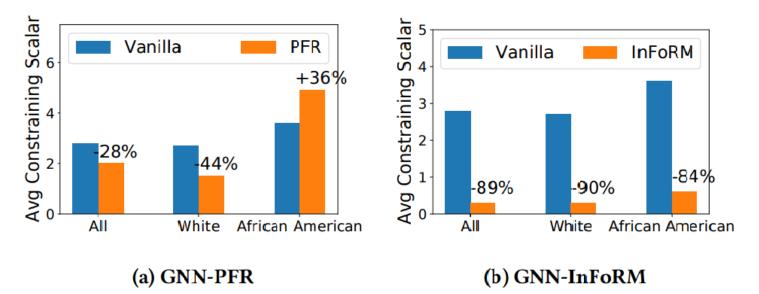

Constraining scalars for a specific individual A specific individual v_i has constraining scalars against all individuals in the dataset

	G	roup	Group B				
	v_1	v_2	v_3	v_4	v_5		
		Q					
v_1	$\epsilon_{1,1}$	<i>ϵ</i> _{1,2}	$\epsilon_{1,3}$	€ 1,4	$\epsilon_{1,5}$		
v ₂	$\epsilon_{2,1}$	<i>ϵ</i> _{2,2}	$\epsilon_{2,3}$	<i>ϵ</i> _{2,4}	$\epsilon_{2,5}$		
<i>v</i> ₃	$\epsilon_{3,1}$	$\epsilon_{3,2}$	$\epsilon_{3,3}$	$\epsilon_{3,4}$	$\epsilon_{3,5}$		
v_4	$\epsilon_{4,1}$	$\epsilon_{4,2}$	$\epsilon_{4,3}$	$\epsilon_{4,4}$	$\epsilon_{4,5}$		
v_5	$\epsilon_{5,1}$	<i>ϵ</i> _{5,2}	€ _{5,3}	<i>€</i> 5,4	$\epsilon_{5,5}$		


Constraining scalars for a specific individual A specific individual v_i has constraining scalars against all individuals in the dataset

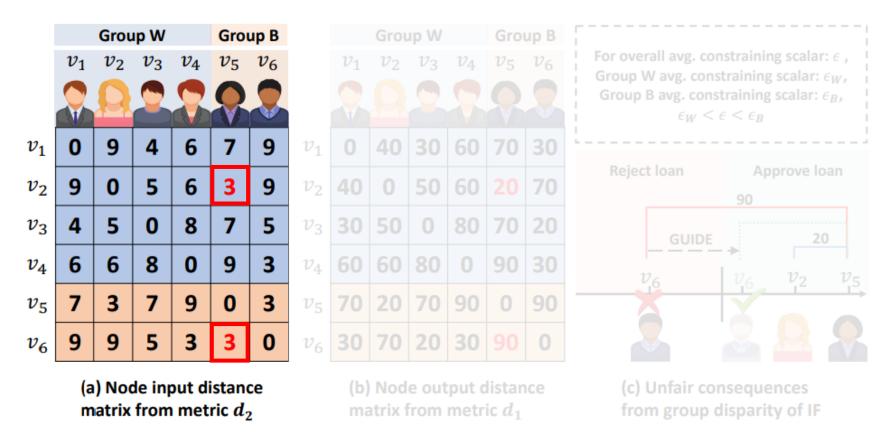
	G	roup	W	Gro	up B]	
	v_1	v_2	v_3	v_4	v_5		
		P					
v_1	$\epsilon_{1,1}$	$\epsilon_{1,2}$	$\epsilon_{1,3}$	$\epsilon_{1,4}$	$\epsilon_{1,5}$	mean e	1
v_2	$\epsilon_{2,1}$	$\epsilon_{2,2}$	$\epsilon_{2,3}$	$\epsilon_{2,4}$	$\epsilon_{2,5}$		
v_3	$\epsilon_{3,1}$	$\epsilon_{3,2}$	$\epsilon_{3,3}$	$\epsilon_{3,4}$	$\epsilon_{3,5}$		
v_4	$\epsilon_{4,1}$	$\epsilon_{4,2}$	$\epsilon_{4,3}$	$\epsilon_{4,4}$	$\epsilon_{4,5}$		
v_5	$\epsilon_{5,1}$	$\epsilon_{5,2}$	$\epsilon_{5,3}$	$\epsilon_{5,4}$	$\epsilon_{5,5}$		


Constraining scalars for different groups Members of a group also have constraining scalars and the average indicates **the level of individual fairness for this group**

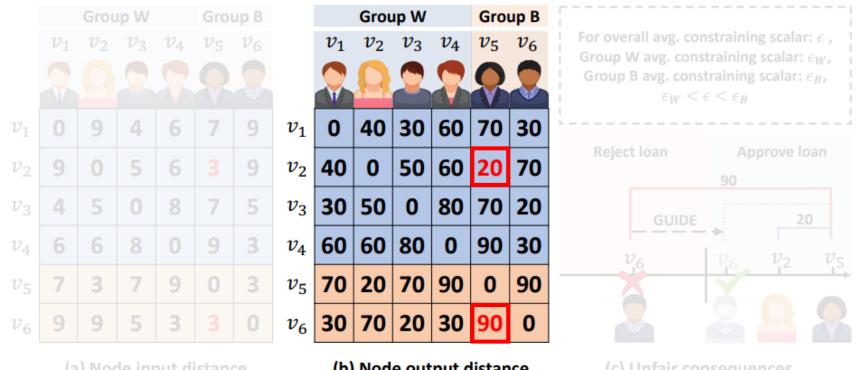

Constraining scalars for different groups Members of a group also have constraining scalars and the average indicates **the level of individual fairness for this group**

Constraining scalars for different groups Members of a group also have constraining scalars and the average indicates **the level of individual fairness for this group**

Existing works [2,5] actually lead to group inequalities of individual fairness



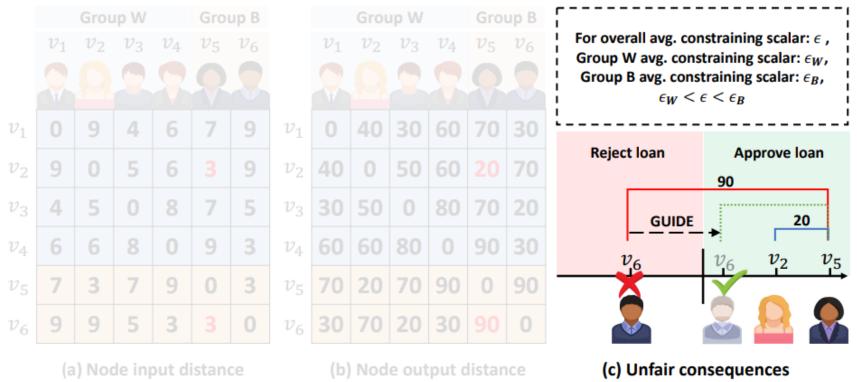
- Disparate optimization for different demographic groups
- **Privileged group** experiences better fairness optimization


PFR [2] Preprocessing algorithm to produce individually fair embeddings InFoRM [5] Preprocessing/in-processing/post-processing algorithm to yield individually fair node embeddings

GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks

Why does the group equality of individual fairness matter? Assume $\epsilon_W < \epsilon < \epsilon_B$

Why does the group equality of individual fairness matter? Assume $\epsilon_W < \epsilon < \epsilon_B$



(a) Node input distance matrix from metric d_2

(b) Node output distance matrix from metric d_1

(c) Unfair consequences from group disparity of IF

Why does the group equality of individual fairness matter? Assume $\epsilon_W < \epsilon < \epsilon_B$

matrix from metric d_1

from group disparity of IF

matrix from metric d_2

Metric for individual (un)fairness for a group

• Overall individual (un)fairness [2, 5]

$$\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$$

Individual (un)fairness for a group

Metric for individual (un)fairness for a group

• Overall individual (un)fairness [2, 5]

$$\sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$$

- Individual (un)fairness for a group V_p
 - Include both intra-group and inter-group evaluations for completeness

$$U_p = \frac{\sum_{v_i \in \mathcal{V}_p} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j:]\|_2^2 \mathbf{S}[i,j]}{m_p}$$

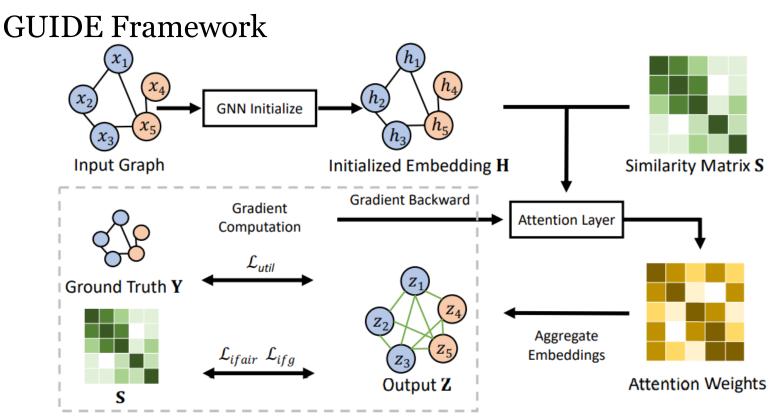
Metric for group disparity of individual fairness

• Propose a new metric:

Group disparity of individual fairness (GDIF)

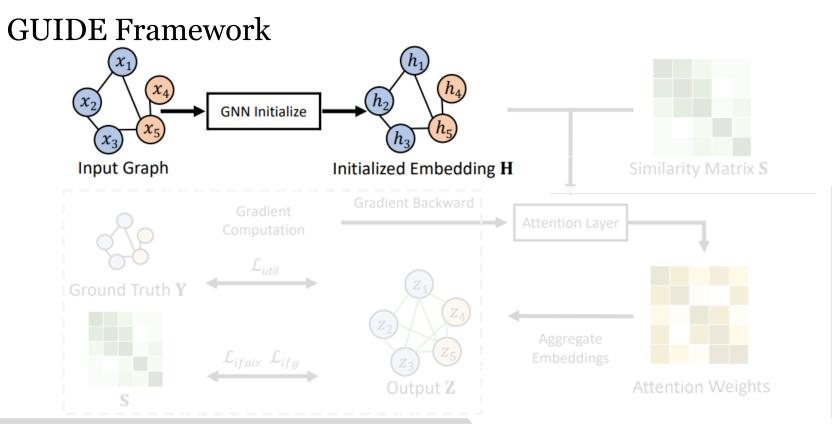
Metric for group disparity of individual fairness

• Propose a new metric:

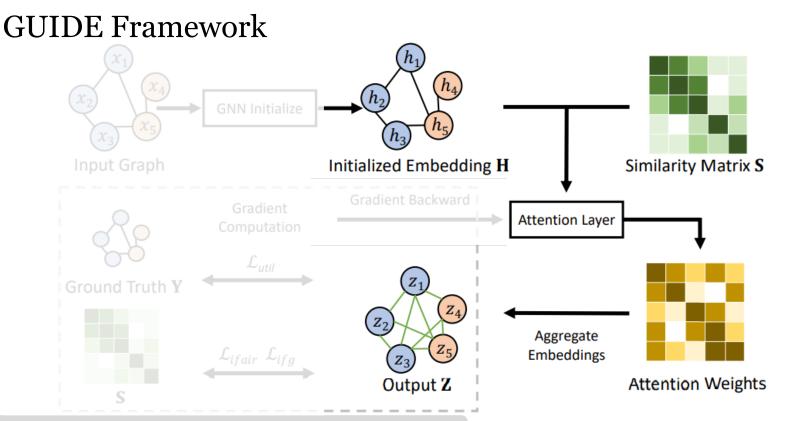

Group disparity of individual fairness (GDIF)

• How to measure disparity for two groups \mathcal{V}_p and \mathcal{V}_q ?

$$GDIF_{p,q} = max\left(\frac{U_p}{U_q}, \frac{U_q}{U_p}\right)$$


• For dataset with multiple groups, GDIF for all groups in dataset:

$$GDIF = \sum_{p,q}^{1 \le p < q \le G} GDIF_{p,q}$$

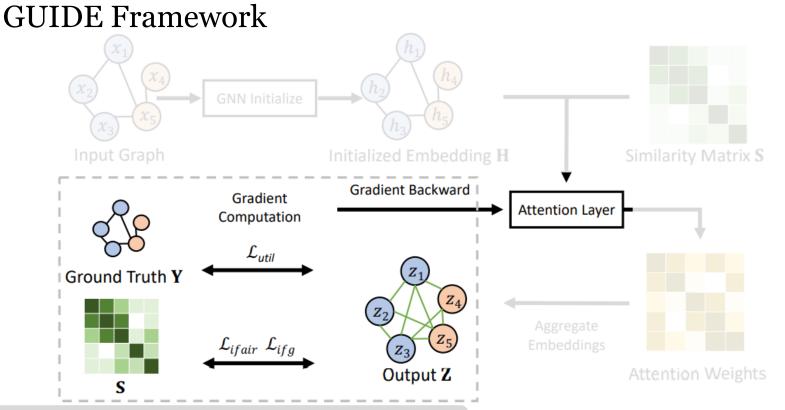

GUIDE includes two main steps:

(1) node embedding initialization and (2) fairness promotion

Step 1: Obtain informative embeddings

Embedding initialization with node feature matrix **X** and node adjacency matrix **A** $\mathcal{L}_{\text{util}} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K} Y_{ij} \log \hat{Y}_{ij}$

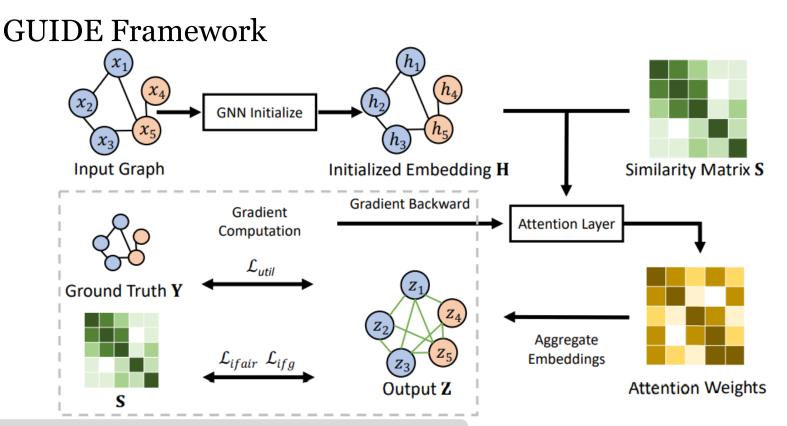
Step 2: Fairness promotion


Fairness promotion with node similarity matrix **S** and node embeddings **H** $\lambda_{i,j} = \frac{\exp(\phi(\mathbf{a}^T[\mathbf{W}\mathbf{h}_i||\mathbf{W}\mathbf{h}_j])\mathbf{S}[i,j])}{\sum_{j \in \mathcal{N}_i} \exp(\phi(\mathbf{a}^T[\mathbf{W}\mathbf{h}_i||\mathbf{W}\mathbf{h}_j])\mathbf{S}[i,j])} \qquad \mathbf{z}_i = \sigma(\sum_{j \in \mathcal{N}_i} \lambda_{i,j}\mathbf{W}\mathbf{h}_j)$

Optimization Objectives

(1) Utility maximization for node classification task

$$\mathcal{L}_{\text{util}} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K} \mathbf{Y}_{ij} \log \hat{\mathbf{Y}}_{ij}$$



Optimization Objectives

(2) Overall individual (un)fairness minimization and (3) GDIF minimization

$$\mathcal{L}_{\text{ifair}} = \sum_{v_i \in \mathcal{V}} \sum_{v_j \in \mathcal{V}} \|\mathbf{Z}[i,:] - \mathbf{Z}[j,:]\|_2^2 \mathbf{S}[i,j]$$

$$\mathcal{L}_{ifg} = \sum_{p,q}^{1 \le p < q \le G} \left(\frac{U_p}{U_q} - 1\right)^2 + \left(\frac{U_q}{U_p} - 1\right)^2$$

Overall Optimization Objectives

(1) Utility maximization, (2) overall individual fairness, (3) group equality of individual fairness

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{util}} + \alpha \mathcal{L}_{\text{ifair}} + \beta \mathcal{L}_{\text{ifg}}$$

Experiments

- Downstream Task: Node classification
- Baselines: FairGNN [3], NIFTY [4], PFR [5], InFoRM [2]
- GNN backbones: GCN [7], GIN [8], JumpingKnowledge [9]
- Metrics: AUCROC, Individual (un)fairness, proposed GDIF
- Datasets: Credit [10], Income [11], Pokec-n [12]

Dataset	Credit	Income	Pokec-n
# of nodes	30,000	14, 821	66, 569
# of node attributes	13	14	266
# of edges in A	304, 754	100, 483	1, 100, 663
# of edges in S	1, 687, 444	1, 997, 641	32, 837, 463
Sensitive Attribute	age	race	age

Credit									
Model	AUC(↑)	IF(↓)	$\mathbf{GDIF}(\downarrow)$	AUC(↑)	$\mathbf{IF}(\downarrow)$	$\mathbf{GDIF}(\downarrow)$	AUC(↑)	IF(↓)	GDIF (↓)
		GCN			GIN		Ju	imping Knowled	ge
Vanilla	0.68±0.04	39.02±3.78	1.32 ± 0.07	0.71±0.00	120.02 ± 15.42	1.75 ± 0.21	0.64±0.11	31.06±13.90	1.32 ± 0.06
FairGNN	0.68 ± 0.01	23.33±12.59	1.33 ± 0.10	0.68 ± 0.02	77.32 ± 48.47	2.18 ± 0.19	0.66 ± 0.02	2.61 ± 1.92	1.52 ± 0.42
NIFTY	0.69±0.00	30.80 ± 1.39	1.24 ± 0.02	0.70 ± 0.01	56.43±37.85	1.63 ± 0.27	0.69±0.00	26.44±2.39	1.24 ± 0.03
PFR	0.64±0.13	36.58 ± 6.91	1.41 ± 0.08	0.71±0.01	162.58 ± 103.87	2.40 ± 1.23	0.67±0.05	36.30 ± 18.22	1.35 ± 0.03
InFoRM	0.68±0.00	2.41 ± 0.00	1.46 ± 0.00	0.69±0.02	2.94 ± 0.28	1.76 ± 0.17	0.67±0.05	5.66 ± 5.31	1.47 ± 0.16
GUIDE	0.68 ± 0.00	1.93±0.11	1.00±0.00	0.68 ± 0.00	2.43±0.02	1.00±0.00	0.68 ± 0.00	2.34±0.11	1.00±0.00
]	Pokec-n				
		GCN		GIN			Jumping Knowledge		
Vanilla	0.77±0.00	951.72±37.28	6.90 ± 0.12	0.76±0.01	4496.47±1535.62	8.35±1.24	0.79±0.00	1631.27±93.94	8.47±0.45
FairGNN	0.69±0.03	363.73 ± 78.38	6.21 ± 1.28	0.69±0.01	416.28 ± 402.83	4.84 ± 2.94	0.70 ± 0.00	807.97 ± 281.26	11.68 ± 2.89
NIFTY	0.74±0.00	85.25±10.55	5.06 ± 0.29	0.76±0.01	2777.36±346.29	9.28 ± 0.28	0.73 ± 0.01	477.31±165.68	8.20±1.33
PFR	0.53±0.00	98.25±9.44	15.84 ± 0.03	0.60 ± 0.01	628.27±85.89	6.20 ± 0.79	0.68 ± 0.00	729.77±74.62	15.66 ± 5.47
InFoRM	0.77±0.00	230.45 ± 6.13	6.62 ± 0.10	0.75±0.01	271.65 ± 30.63	6.83±1.34	0.78 ± 0.01	315.27 ± 25.21	6.80 ± 0.54
GUIDE	0.73±0.02	55.05±30.87	1.11±0.03	0.74 ± 0.01	120.65±17.33	1.12 ± 0.03	0.75 ± 0.02	83.09±18.70	1.13±0.02

Credit									
Model	AUC(↑)	$\mathbf{IF}(\downarrow)$	$\mathbf{GDIF}(\downarrow)$	AUC(↑)	$\mathbf{IF}(\downarrow)$	GDIF (↓)	AUC(↑)	$\mathbf{IF}(\downarrow)$	GDIF (↓)
		GCN			GIN		Jı	ımping Knowled	ge
Vanilla	0.68±0.04	39.02±3.78	1.32 ± 0.07	0.71±0.00	120.02 ± 15.42	1.75 ± 0.21	0.64 ± 0.11	31.06±13.90	1.32 ± 0.06
FairGNN	0.68 ± 0.01	23.33 ± 12.59	1.33 ± 0.10	0.68 ± 0.02	77.32 ± 48.47	2.18 ± 0.19	0.66 ± 0.02	2.61 ± 1.92	1.52 ± 0.42
NIFTY	0.69±0.00	30.80±1.39	1.24 ± 0.02	0.70 ± 0.01	56.43±37.85	1.63 ± 0.27	0.69±0.00	26.44±2.39	1.24 ± 0.03
PFR	0.64±0.13	36.58±6.91	1.41 ± 0.08	0.71±0.01	162.58 ± 103.87	2.40 ± 1.23	0.67 ± 0.05	36.30 ± 18.22	1.35 ± 0.03
InFoRM	0.68±0.00	2.41 ± 0.00	1.46 ± 0.00	0.69±0.02	2.94 ± 0.28	1.76 ± 0.17	0.67 ± 0.05	5.66±5.31	1.47±0.16
GUIDE	0.68±0.00	1.93±0.11	1.00±0.00	0.68 ± 0.00	2.43±0.02	1.00±0.00	0.68 ± 0.00	2.34±0.11	1.00±0.00
]	Pokec-n				
		GCN		GIN			Jumping Knowledge		
Vanilla	0.77±0.00	951.72±37.28	6.90 ± 0.12	0.76±0.01	4496.47±1535.62	8.35±1.24	0.79±0.00	1631.27±93.94	8.47±0.45
FairGNN	0.69±0.03	363.73 ± 78.38	6.21±1.28	0.69±0.01	416.28 ± 402.83	4.84 ± 2.94	0.70 ± 0.00	807.97 ± 281.26	11.68 ± 2.89
NIFTY	0.74±0.00	85.25 ± 10.55	5.06 ± 0.29	0.76±0.01	2777.36±346.29	9.28±0.28	0.73 ± 0.01	477.31±165.68	8.20±1.33
PFR	0.53±0.00	98.25 ± 9.44	15.84 ± 0.03	0.60 ± 0.01	628.27±85.89	6.20±0.79	0.68 ± 0.00	729.77±74.62	15.66 ± 5.47
InFoRM	0.77±0.00	230.45 ± 6.13	6.62 ± 0.10	0.75±0.01	271.65 ± 30.63	6.83±1.34	0.78 ± 0.01	315.27±25.21	6.80 ± 0.54
GUIDE	0.73±0.02	55.05±30.87	1.11±0.03	0.74 ± 0.01	120.65±17.33	1.12±0.03	0.75 ± 0.02	83.09±18.70	1.13±0.02

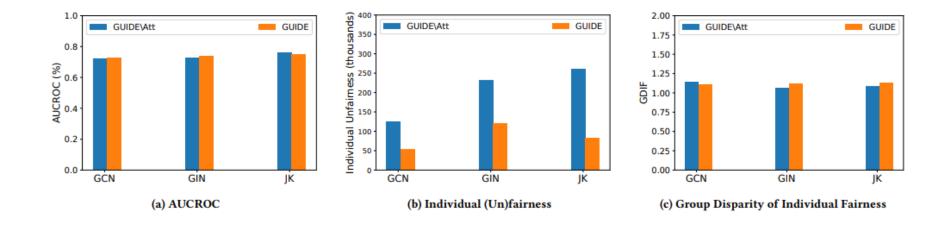
Observations

• GUIDE achieves the **best fairness performances** across multiple datasets and GNN backbones as shown with the IF and GDIF metrics

Credit										
Model	AUC(↑)	$IF(\downarrow)$	GDIF(↓)	AUC(↑)	$\mathbf{IF}(\downarrow)$	$\mathbf{GDIF}(\downarrow)$	AUC(↑)	IF(↓)	GDIF (↓)	
		GCN			GIN		Ju	imping Knowled	ge	
Vanilla	0.68±0.04	39.02±3.78	1.32 ± 0.07	0.71±0.00	120.02 ± 15.42	1.75 ± 0.21	0.64±0.11	31.06±13.90	1.32 ± 0.06	
FairGNN	0.68 ± 0.01	23.33 ± 12.59	1.33 ± 0.10	0.68 ± 0.02	77.32 ± 48.47	2.18±0.19	0.66 ± 0.02	2.61 ± 1.92	1.52 ± 0.42	
NIFTY	0.69±0.00	30.80 ± 1.39	1.24 ± 0.02	0.70±0.01	56.43±37.85	1.63 ± 0.27	0.69±0.00	26.44 ± 2.39	1.24 ± 0.03	
PFR	0.64±0.13	36.58 ± 6.91	1.41 ± 0.08	0.71±0.01	162.58 ± 103.87	2.40 ± 1.23	0.67±0.05	36.30 ± 18.22	1.35 ± 0.03	
InFoRM	0.68±0.00	2.41 ± 0.00	1.46 ± 0.00	0.69±0.02	2.94±0.28	1.76 ± 0.17	0.67±0.05	5.66 ± 5.31	1.47 ± 0.16	
GUIDE	0.68±0.00	1.93±0.11	1.00 ± 0.00	0.68 ± 0.00	2.43±0.02	1.00±0.00	0.68 ± 0.00	2.34±0.11	1.00±0.00	
				I	Pokec-n					
		GCN			GIN			Jumping Knowledge		
Vanilla	0.77±0.00	951.72±37.28	6.90±0.12	0.76±0.01	4496.47±1535.62	8.35±1.24	0.79±0.00	1631.27±93.94	8.47±0.45	
FairGNN	0.69±0.03	363.73 ± 78.38	6.21±1.28	0.69±0.01	416.28±402.83	4.84±2.94	0.70 ± 0.00	807.97 ± 281.26	11.68 ± 2.89	
NIFTY	0.74±0.00	85.25 ± 10.55	5.06 ± 0.29	0.76±0.01	2777.36±346.29	9.28±0.28	0.73±0.01	477.31±165.68	8.20±1.33	
PFR	0.53±0.00	98.25 ± 9.44	15.84 ± 0.03	0.60±0.01	628.27±85.89	6.20±0.79	0.68±0.00	729.77±74.62	15.66 ± 5.47	
InFoRM	0.77±0.00	230.45 ± 6.13	6.62 ± 0.10	0.75±0.01	271.65±30.63	6.83±1.34	0.78 ± 0.01	315.27 ± 25.21	6.80 ± 0.54	
GUIDE	0.73±0.02	55.05±30.87	1.11±0.03	0.74 ± 0.01	120.65±17.33	1.12±0.03	0.75 ± 0.02	83.09±18.70	1.13±0.02	

Observations

- GUIDE achieves the **best fairness performances** across multiple datasets and GNN backbones as shown with the IF and GDIF metrics
- GUIDE obtains high fairness optimization for more expressive GNNs such as GIN


Credit									
Model	AUC(↑)	$IF(\downarrow)$	GDIF(↓)	AUC(↑)	$\mathbf{IF}(\downarrow)$	$GDIF(\downarrow)$	AUC(↑)	IF(↓)	GDIF (↓)
		GCN			GIN		Ju	mping Knowled	ge
Vanilla	0.68±0.04	39.02±3.78	1.32 ± 0.07	0.71±0.00	120.02 ± 15.42	1.75 ± 0.21	0.64 ± 0.11	31.06±13.90	1.32 ± 0.06
FairGNN	0.68 ± 0.01	23.33 ± 12.59	1.33 ± 0.10	0.68 ± 0.02	77.32 ± 48.47	2.18 ± 0.19	0.66 ± 0.02	2.61 ± 1.92	1.52 ± 0.42
NIFTY	0.69±0.00	30.80 ± 1.39	1.24 ± 0.02	0.70±0.01	56.43±37.85	1.63 ± 0.27	0.69±0.00	26.44±2.39	1.24 ± 0.03
PFR	0.64±0.13	36.58 ± 6.91	1.41 ± 0.08	0.71±0.01	162.58 ± 103.87	2.40 ± 1.23	0.67 ± 0.05	36.30 ± 18.22	1.35 ± 0.03
InFoRM	0.68±0.00	2.41 ± 0.00	1.46 ± 0.00	0.69±0.02	2.94±0.28	1.76 ± 0.17	0.67 ± 0.05	5.66 ± 5.31	1.47 ± 0.16
GUIDE	0.68 ± 0.00	1.93±0.11	1.00 ± 0.00	0.68 ± 0.00	2.43 ± 0.02	1.00 ± 0.00	0.68 ± 0.00	2.34±0.11	1.00±0.00
]	Pokec-n				
		GCN			GIN Ju			mping Knowledge	
Vanilla	0.77±0.00	951.72±37.28	6.90 ± 0.12	0.76±0.01	4496.47±1535.62	8.35±1.24	0.79±0.00	1631.27 ± 93.94	8.47±0.45
FairGNN	0.69±0.03	363.73 ± 78.38	6.21±1.28	0.69±0.01	416.28 ± 402.83	4.84 ± 2.94	0.70 ± 0.00	807.97 ± 281.26	11.68 ± 2.89
NIFTY	0.74±0.00	85.25 ± 10.55	5.06 ± 0.29	0.76±0.01	2777.36±346.29	9.28±0.28	0.73 ± 0.01	477.31±165.68	8.20±1.33
PFR	0.53±0.00	98.25 ± 9.44	15.84 ± 0.03	0.60 ± 0.01	628.27±85.89	6.20±0.79	0.68 ± 0.00	729.77±74.62	15.66 ± 5.47
InFoRM	0.77±0.00	230.45 ± 6.13	6.62 ± 0.10	0.75±0.01	271.65 ± 30.63	6.83±1.34	0.78 ± 0.01	315.27 ± 25.21	6.80 ± 0.54
GUIDE	0.73±0.02	55.05±30.87	1.11±0.03	0.74 ± 0.01	120.65 ± 17.33	1.12 ± 0.03	0.75 ± 0.02	83.09±18.70	1.13±0.02

Observations

- GUIDE achieves the **best fairness performances** across multiple datasets and GNN backbones as shown with the IF and GDIF metrics
- GUIDE obtains high fairness optimization for more expressive GNNs such as GIN
- GUIDE obtains comparable utility performance in the node classification task compared to baselines

Experiments

Ablation of attention


Observations

- Backbone GNN without attention mechanism to minimize the same loss function
- Results show attention help further reduce individual (un)fairness while having similar AUCROC and GDIF performances

Conclusions

- 1. Current individual fairness methods **omit group equality constraints** and could cause unfair consequences in critical decision systems
- 2. GUIDE tackles this issue and **alleviates group disparity of individual fairness in GNNs** while maintaining utility and fairness performances
- 3. GUIDE is evaluated with extensive experiments to demonstrate its effectiveness in promoting group equality of individual fairness

This material is supported by the Cisco Faculty Research Award

References

- Cynthia Dwork et al. Fairness through awareness [1]
- Jian Kang et al. InFoRM: Individual Fairness on Graph Mining [2]
- Enyan Dai et al. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information [3]
- Chirag Agarwal et al. Towards a Unified Framework for Fair and Stable Graph Representation Learning [4]
- Preethi Lahoti et al. Operationalizing Individual Fairness with Pairwise Fair Representations [5]
- Petar Velickovic et al. Graph Attention Networks [6]
- Thomas N. Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks [7]
- Keyulu Xu, et al. How Powerful are Graph Neural Networks? [8]
- Keyulu Xu, et al. Representation Learning on Graphs with Jumping Knowledge Networks [9]
- I-Cheng Yeh, et al. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients [10]
- Dheeru Dua, et al. UCI Machine Learning Repository [11]
- L. Takac, et al. Data analysis in public social networks [12]

Thanks for listening!

GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks