Why Do Low-Passing Filters Work in Graph Neural Networks?
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Please write a one-page explanatory essay about the research topic below. You will be able to complete this explanatory
essay without digging into much technical details of related topics.

Background. In an online social network', a user account (e.g., a Twitter account) can be represented as a node, and the
connections between users (e.g., following relationship and friend connections) can be considered as the topological structure over
these nodes. For example, when you have collected lots of Twitter accounts and their following connections?, you have a network.
To take a step further, an attributed network refers to the network with the associated attribute information. For example, for
your previously collected network, if you can further collect the information associated with each user and encode the information
of each user as a vector, then you have an attributed network. We will focus on such a type of attributed network, where we
have nodes, one attribute vector per node, and the topological structure between nodes. Such data is widely used by many graph
learning models (e.g., Graph Neural Networks) for a plethora of learning tasks (e.g., node classification).

Let us assume that we have an attributed network (as introduced above), and we have a 10-dimensional attribute vector per
node. Imagine the topology of this network is drawn on a piece of paper, and the darkness of the color for each node is determined
by the value of the first dimension in its attribute vector. Then, you may see a snapshot of "darkness waves" across the network
topology. Such a snapshot of darkness waves may be very messy, but it can be "decomposed" (Graph Fourier Transform) as a
series of snapshots of waves with pre-defined appearances (Graph Fourier Basis) [1]. In these snapshots of waves with pre-defined
appearances, the darkness levels of some snapshots of waves could fluctuate "quickly": even the darkness levels of neighboring
nodes change a lot (high-frequency components); the darkness levels of other snapshots of waves could fluctuate "slowly": the
darkness levels on lots of nodes that are topologically close to each other look similar (low-frequency components).

We now introduce a mainstream of Graph Neural Networks (GNNs), spectral GNNs [6], about how they typically process
an attributed network and return predictions. Specifically, when spectral GNNs are given an attributed network, a simplified
process for them is to (1) perform decomposition of the snapshots of waves; (2) "arbitrarily" throw away those snapshots of waves
whose darkness fluctuates very quickly (Low-Pass Filtering) [5, 3]; (3) add the rest snapshots together as a snapshot that looks
a bit different from the vanilla snapshot; (4) repeat the first three steps for every dimension of the attributes of nodes; and (5)
use a deep learning model (e.g., a multilayer perceptron) to generate output. Notably, in this process, spectral GNNs only keep
those snapshots whose darkness fluctuates slowly (connected nodes have similar color darkness levels), and they further make
predictions based on the "summation" of these snapshots. Does this operation always help? Well, it depends.

Observation. Surprisingly, some researchers found that spectral GNNs seem to be very helpful in performing predictions
in certain applications. For example, in a citation network where nodes are papers and connections represent the citation
relationship, spectral GNNs are found to predict the multi-categorical research area of papers much more accurately compared
with directly using step (5) in the previous paragraph to process node attributes (bag-of-word representations in a citation
network) and obtain predictions [2]. This is a node-level task, i.e., we have one prediction (which categorical research area a
paper belongs to) for each node. In network-level tasks, i.e., we have one prediction for each network®, researchers also found
spectral GNNs help a lot. For example, spectral GNNs are found to be helpful for the classification of molecular properties [4],
where each molecule is considered as a network (with atoms being nodes and chemical bounds being connections).

Question. You will write a one-page essay to explain the observation above: why do spectral GNNs help a lot when they
"arbitrarily" throw away those snapshots of waves whose darkness fluctuates very quickly? You are recommended to answer this
question in two perspectives: node-level tasks (e.g., node classification) and graph-level tasks (e.g., graph classification). You will
need to survey related literature to complete this essay (maybe start from the references below), and you are required to include
necessary references to support key claims. You are not restricted from using tools based on generative Al but not recommended,
since they constantly return inaccurate claims and fabricated references.
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IWe use the word "network" and "graph" interchangeably.
2For simplicity, we consider all connections to be undirected, and two nodes can only have a maximum of one connection between them.
3Here, we still have one node attribute vector per node in the network.
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In today’s rapidly evolving digital landscape, artificial intelligence (AI) has become deeply integrated into our
daily lives, from social media recommendations to healthcare diagnostics. However, this increasing influence raises
critical questions about AI’s reliability, fairness, and societal impact. The Responsible AI (RAI) Lab at Florida State
University, directed by Dr. Yushun Dong, is dedicated to addressing these fundamental challenges through cutting-edge
research across four interconnected areas.

AT Explainability. Imagine using Al to make crucial medical decisions - wouldn’t you want to understand why the Al
made its recommendations? This question drives our research in Al explainability. We develop innovative methods to
make Al systems more transparent and interpretable, particularly focusing on graph neural networks (GNNs), which
are powerful tools for analyzing interconnected data. Our groundbreaking work includes techniques for explaining
GNN decisions through training node attribution [12], information bottleneck approaches [30], and leveraging large
language models for molecular applications [20]. We’ve also developed advanced frameworks like GIGAMAE [28] and
SEESAW |[11] to better understand Al models in structural and empirical ways, making Al systems more transparent.

Al Fairness. Just as we expect fairness in human decision-making, Al systems must treat all individuals and groups
equitably. Our lab leads groundbreaking research in Al fairness, particularly in graph-based systems [9]. We’ve devel-
oped comprehensive approaches to ensure both individual fairness |5] and group fairness [29], while creating innovative
solutions for debiasing AI systems [8, 39]. Our work extends to fair knowledge distillation [15] and rebalancing tech-
niques [24]. To make these advances accessible to the broader community, we’ve developed PyGDebias [6], a practical
toolkit for implementing fair AI systems, and published influential surveys [9] that guide researchers and practitioners.

AT Security. As Al systems become more prevalent in critical applications, ensuring their security is paramount. Our
lab investigates both attack mechanisms and defense strategies [34]. We’ve pioneered research in adversarial attacks on
graph fairness [41], developed novel spectral attacks [43], and created certified defense mechanisms [14|. Our innovative
work includes contrastive learning for anomaly detection [40] and certified unlearning in neural networks [42, 13]. We’ve
also made significant contributions to federated learning security [18, 17| and adaptive network filtering [4].

AI/ML Applications. Our theoretical advances translate directly into real-world solutions across various domains.
In healthcare, we've developed cutting-edge systems for antibiogram pattern prediction [16] and analyzed COVID-
19 policy impacts [26]. Our transportation research includes intelligent route planning [38] and advanced pavement
performance forecasting [10]. We’ve also reviewed recommendation systems [7, 21| and made significant strides in
language models [37, 25, 23, 36]. Our work extends to environmental studies [2]|, brain network analysis [35], time
series forecasting [27, 22|, and outlier detection [1]. We’ve also developed sophisticated techniques for few-shot learning
[31], hierarchical task learning [33, 32|, and hierarchical demonstration optimization [19] to foster practical Al

The RAI Lab stands at the forefront of responsible Al research, as evidenced by Dr. Dong’s comprehensive
doctoral work [3] and numerous publications in top-tier venues. We welcome students and researchers passionate
about developing Al systems that are not only powerful but also fair, explainable, and secure. Our lab provides a
collaborative environment where theoretical innovation meets practical impact, supported by state-of-the-art resources
and mentorship. Through the above-mentioned works, we’re shaping the future of responsible Al development.

Join us in our mission to make Al systems more trustworthy, fair, and beneficial for society. Whether you’re
interested in theoretical foundations or practical applications, the RAI Lab offers exciting opportunities to contribute to
cutting-edge research that matters. We are always open to research interns, whether you're an undergraduate student,
graduate student, or early-career researcher. We welcome everyone to reach out and explore potential collaboration
opportunities, regardless of your background or experience level. Feel free to contact us to discuss how you can
contribute to and grow with our cutting-edge research in responsible Al.
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