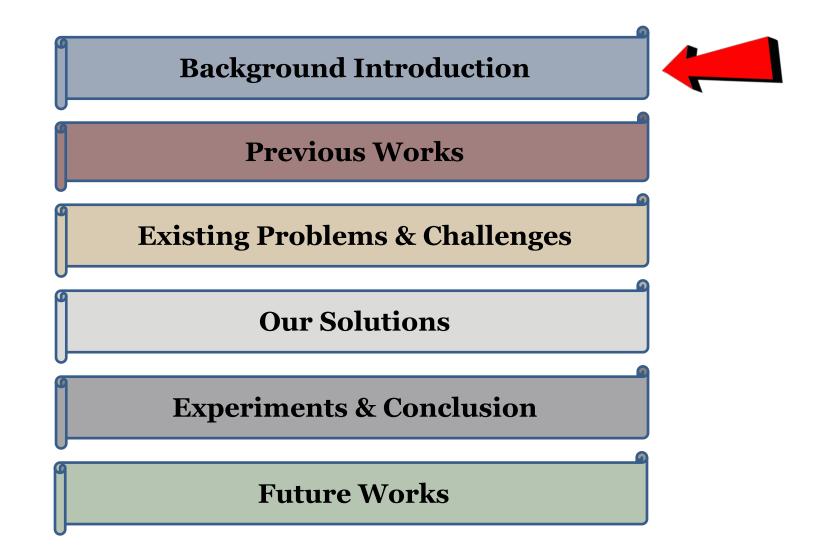


Individual Fairness for Graph Neural Networks: A Ranking based Approach

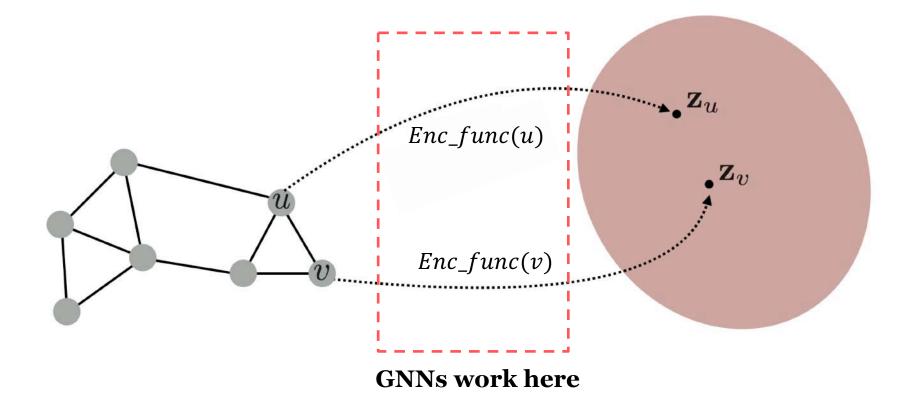
Yushun Dong University of Virginia 06/20/2021

Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021

Outline

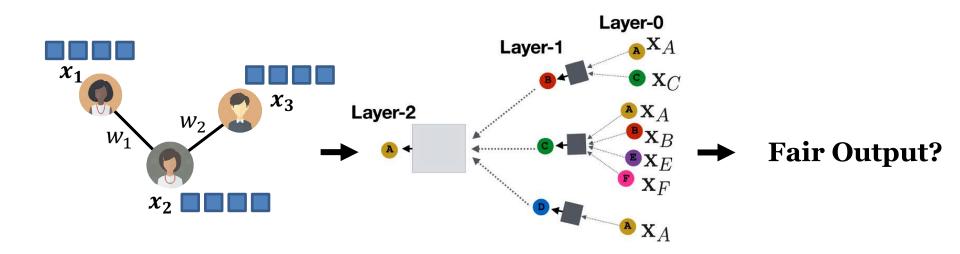


Goal of Graph Neural Networks (GNNs): to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.



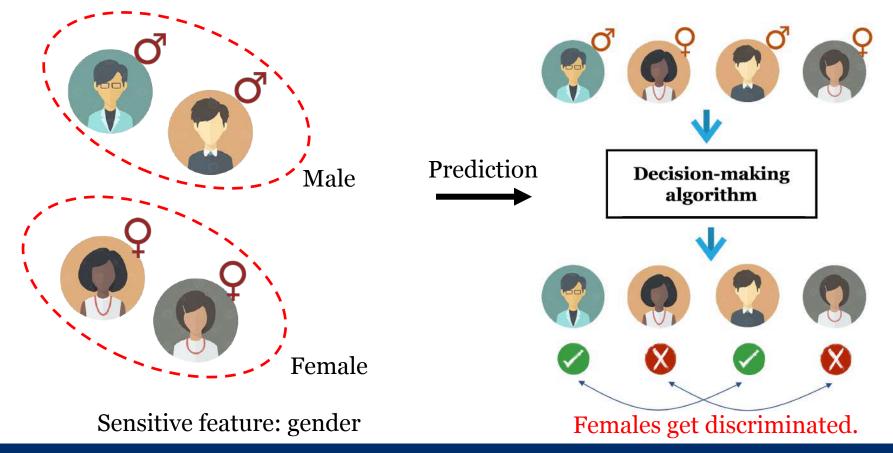
Background Introduction: Different Fairness Notions

- Traditional GNNs usually lack fairness consideration.
- Introducing different fairness notions to graphs and promoting fairness for GNNs become urgent needs.
- So what are common fairness notions?



Group Fairness

 Decision-making algorithm should not make biased prediction towards people with certain sensitive feature.

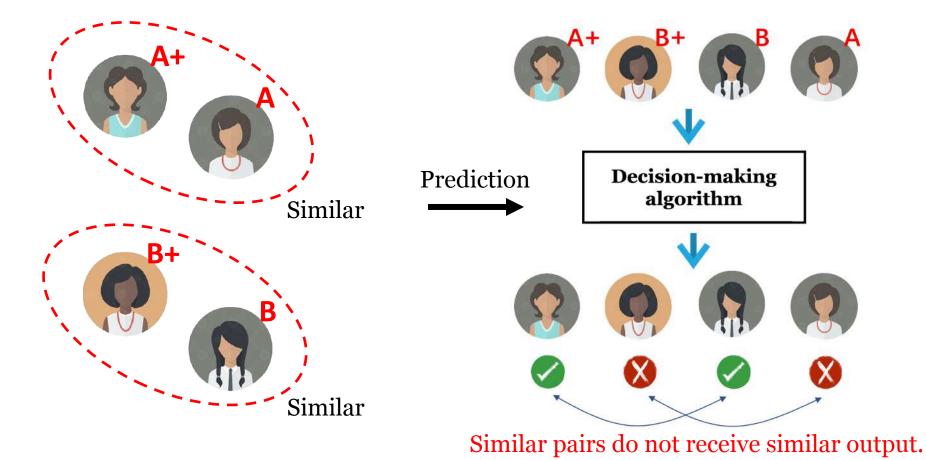


Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021

Different Fairness Notions: Group v.s. Individual

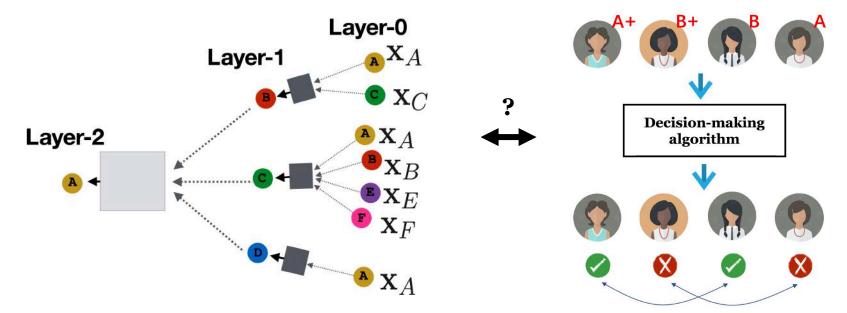
Individual Fairness: higher granularity

 Similar people should be treated similarly.



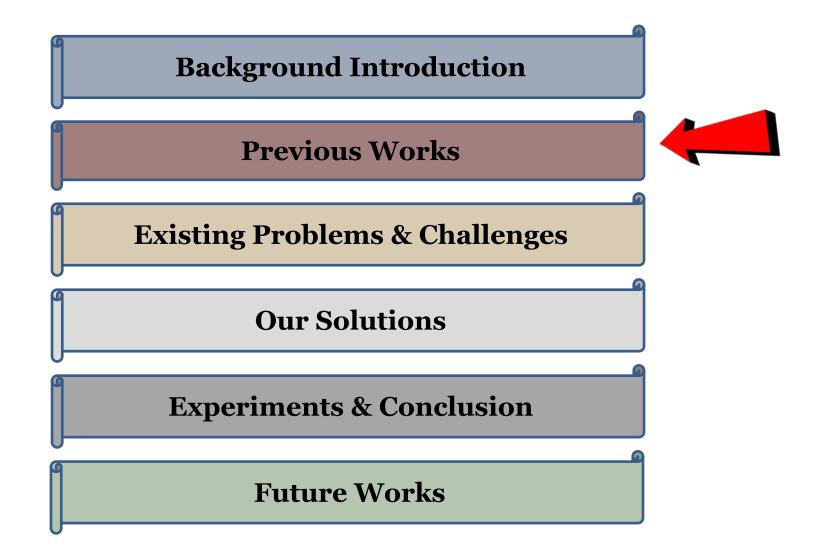
Goal of this work

- Up to now, group fairness has been thoroughly explored in GNNs.
- As a more granular fairness notion, individual fairness has not been studied in GNNs.



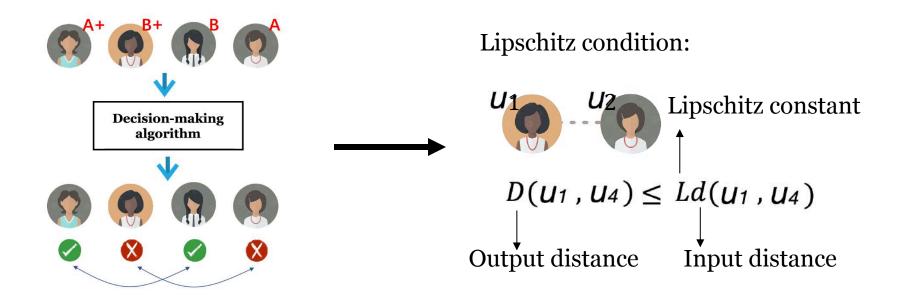
Goal: Promoting individual fairness in GNNs.

Outline



Previous works

- **[Kang et al., 2020]** formulate the individual fairness optimization problem in graphs based on *Lipschitz condition*.
- Output distance between pairs ≤ scaled input distance between pairs : similar people are treated similarly.



[Kang et al., 2020] Kang J, He J, Maciejewski R, et al. InFoRM: Individual Fairness on Graph Mining[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 379-389.

Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021

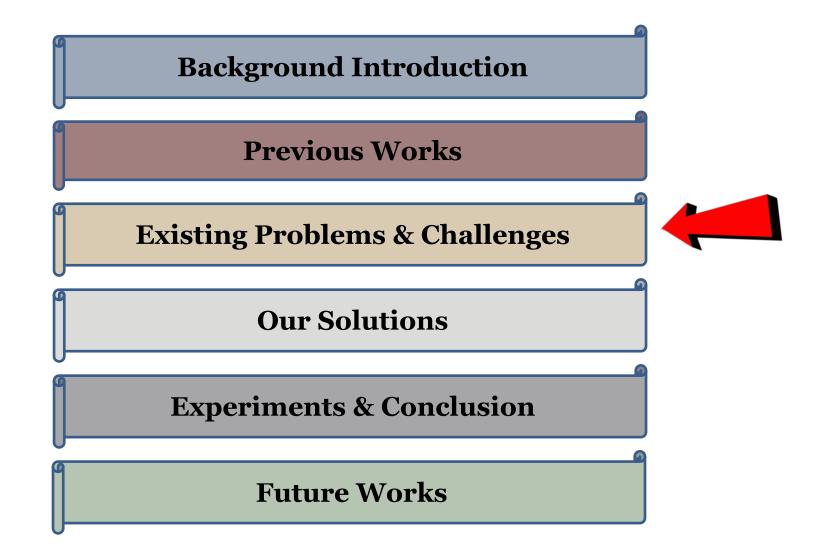
Previous works

- Here the oracle similarity matrix **S** is given as side information.
- Output distance : ℓ_2 distance between output vectors;
- Input distance: inverse of similarity between individual pairs;

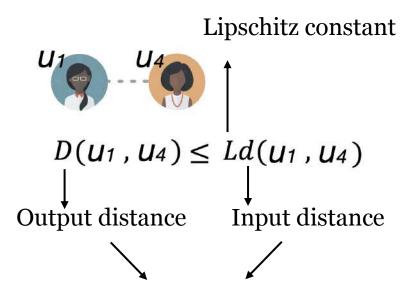
Lipschitz condition:

$$\|\mathbf{Y}[i,:] - \mathbf{Y}[j,:]\|_{F}^{2} \leq \frac{\epsilon}{\mathbf{S}[i,j]} \quad \forall i, j = 1, ..., n \quad \longleftrightarrow \quad \begin{array}{c} U_{1} & U_{2} \\ \downarrow & U_{1} & U_{2} & U_{2} \\ \downarrow & U_{1} & U_{2} & U_{2} & U_{2} \\ \downarrow & U_{1} & U_{2} & U_{2} \\ \downarrow & U_{1} & U_{2} & U_{2} & U_{2} & U_{2} \\ \downarrow & U_{1} & U_{2} & U_{2}$$

Outline



Constraint Formulation.

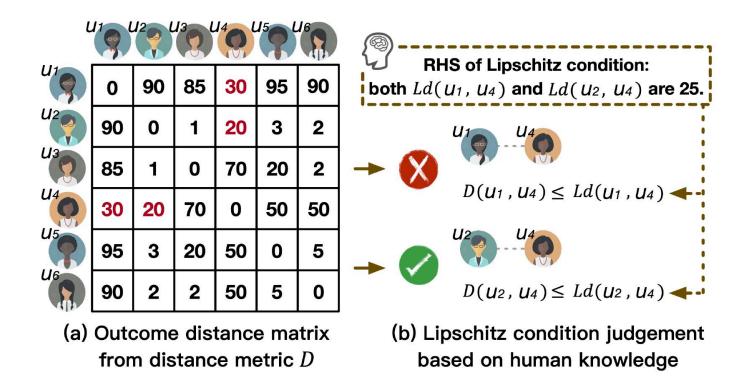


From different domains and different distance metrics.

How can we achieve individual fairness without specifying such a constant and avoid distance comparison across domains?

Existing Problems & Challenges

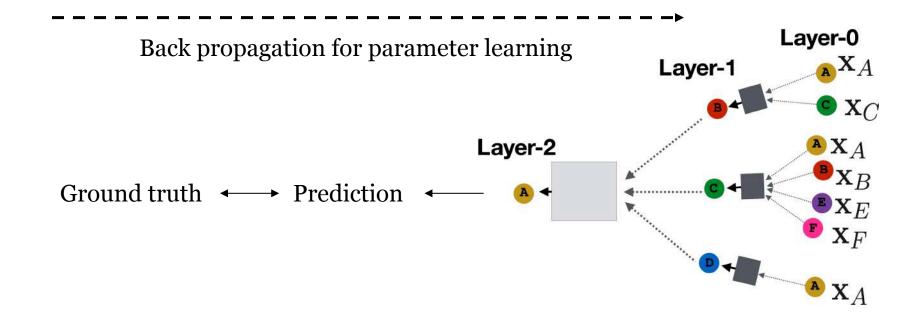
Distance Calibration.



How can we achieve individual fairness with natural calibration across different individuals?

Existing Problems & Challenges

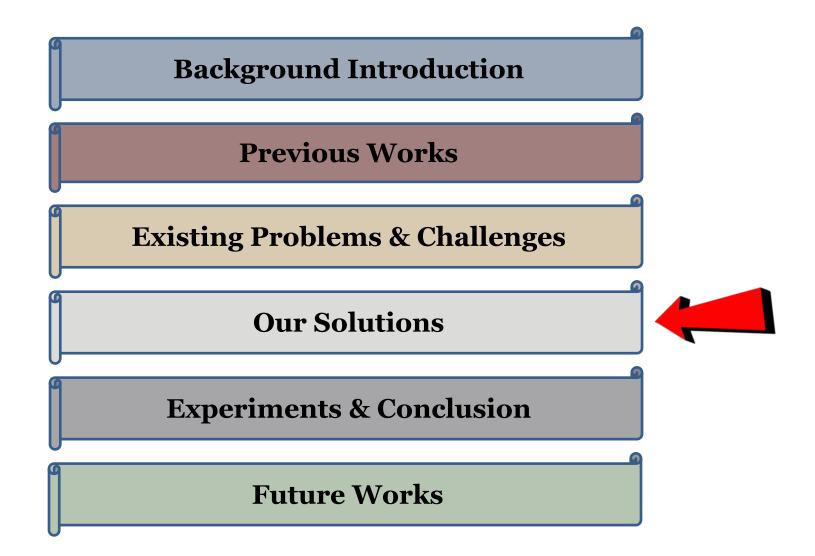
• End-to-End Learning Paradigm.



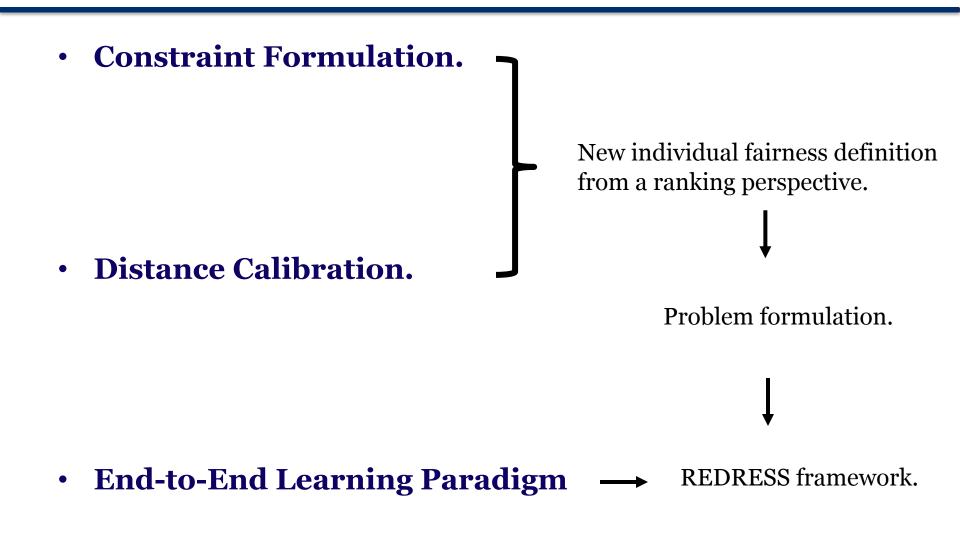
An important advantage of GNN is its end-to-end learning* paradigm. **How can** we achieve individual fairness without jeopardizing such advantage?

*End-to-end learning usually refers to omitting any hand-crafted intermediary algorithms and directly learning the solution of a given problem from the sampled dataset.

Outline

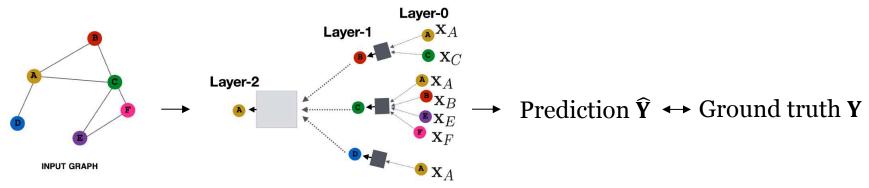


Our Solutions: Outline

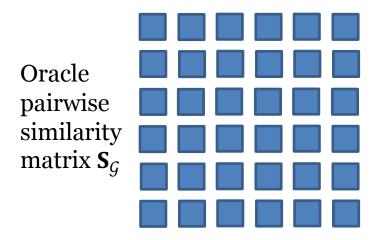


Our Solutions: Ranking-based Individual Fairness

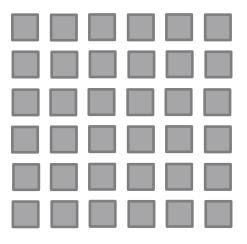
Traditional GNN based graph mining data flow without fairness consideration:



Extra fairness indicators for input and output data:

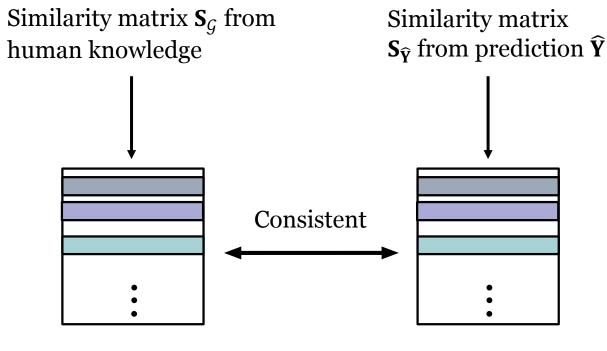


Pairwise similarity matrix $S_{\widehat{Y}}$ obtained from \widehat{Y}



Our Solutions: Ranking-based Individual Fairness

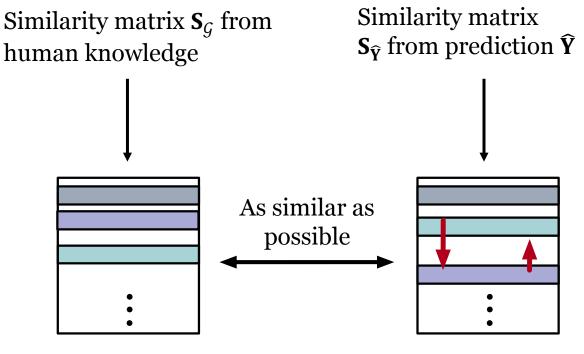
Ranking based individual fairness: for each individual *i*, if we have



Ranking with other individuals for instance *i* in $\mathbf{S}_{\mathcal{G}}$

Ranking with other individuals for instance *i* in $S_{\hat{Y}}$

Promoting individual fairness from a ranking perspective: for each individual *i*, our goal is to

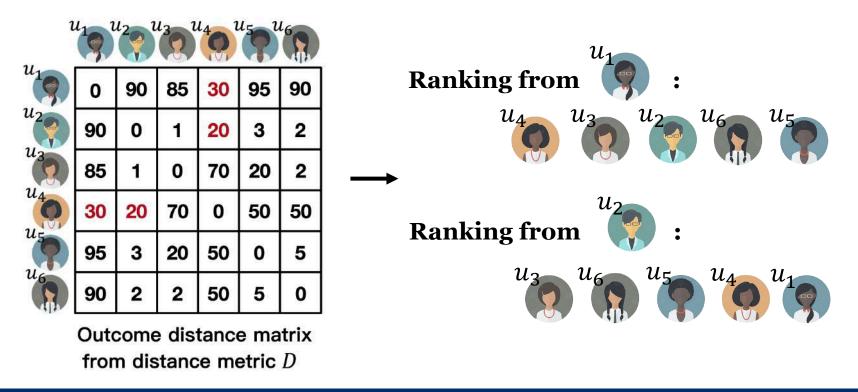


Ranking with other individuals for instance *i* in S_G Ranking with other individuals for instance *i* in $S_{\hat{Y}}$

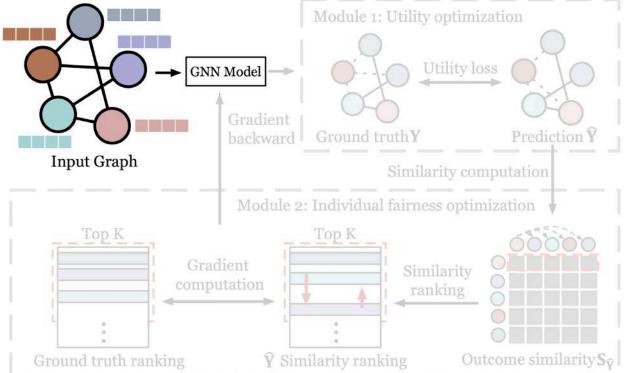
Our Solutions: Ranking-based Problem Formulation

The newly proposed Ranking-based individual fairness definition & corresponding problem formulation:

- Naturally calibrate across individuals;
- Provide a new constraint criterion to achieve individual fairness;



Our Solutions: Proposed Framework-REDRESS



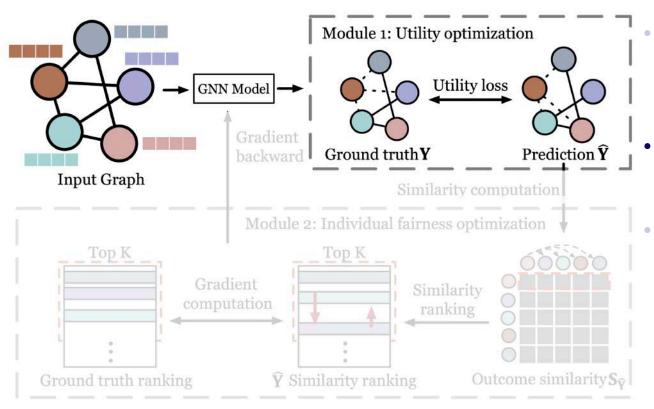
GNN backbone model.

Basic GNN structure to achieve downstream tasks.

- **Utility maximization.** It aims to minimize the downstream task loss.
- Individual fairness optimization.

It aims to enforces the similarity rankings from $S_{\hat{Y}}$ and $S_{\mathcal{G}}$ to be similar.

Our Solutions: Proposed Framework-REDRESS



GNN backbone model.

Basic GNN structure to make downstream tasks.

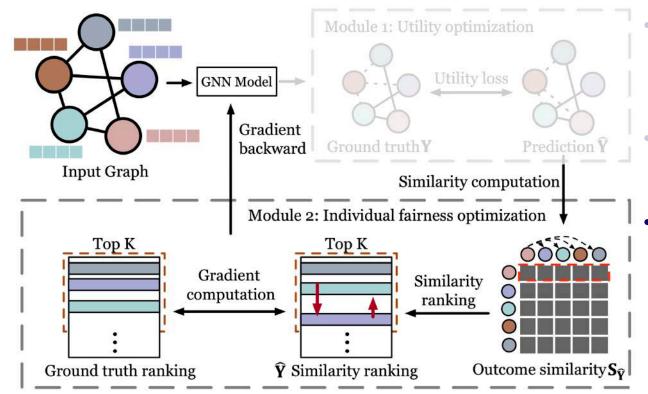
Utility maximization.

It aims to minimize the downstream task loss.

Individual fairness optimization.

It aims to enforces the similarity rankings from $S_{\hat{Y}}$ and $S_{\mathcal{G}}$ to be similar.

Our Solutions: Proposed Framework—REDRESS



GNN backbone model.

Basic GNN structure to make downstream tasks.

• Utility maximization. It aims to minimize the downstream task loss.

Individual fairness optimization.

It aims to enforces the similarity rankings from $S_{\hat{Y}}$ and $S_{\mathcal{G}}$ to be similar.

GNN backbone: The basic operation of GNN between l-th layer and (l + 1)-th layer can be summarized as:

$$\mathbf{h}_{v}^{(l+1)} = \sigma(\text{COMBINE}(\mathbf{h}_{v}^{(l)}, f(\{\mathbf{h}_{u}^{(l)} : u \in \mathcal{N}(v)\})))$$

 $\mathbf{h}_{v}^{(l+1)}$: Embedding of node v at (l + 1)-th layer;

f(.): Information aggregation function;

COMBINE(.) : Information combine function;

- $\sigma(.)$: Activation function;
- $\mathcal{N}(v)$: Neighborhood set of node v;

Utility maximization: loss function can be initialized as the cross-entropy between predictions and ground truth.

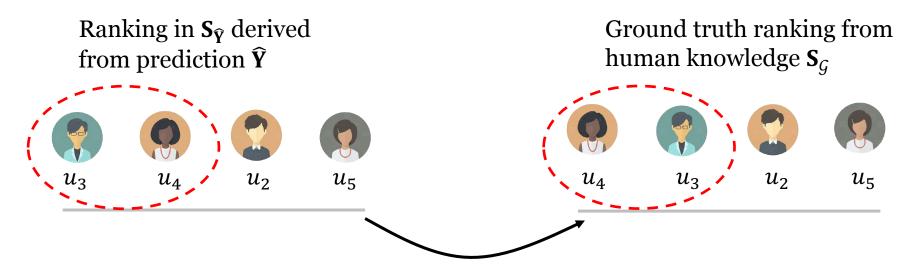
$$\mathcal{L} = -\sum_{(i,j)\in\mathcal{T}} \mathbf{Y}_{ij} \ln \hat{\mathbf{Y}}_{ij}$$

Node classification: \mathcal{T} is the (node, class) tuple set for training nodes.

Link prediction : \mathcal{T} is the (node, node) tuple set for the vertices of training edges.

Individual fairness optimization: for every node, the two similarity ranking lists with other nodes derived from $S_{\hat{Y}}$ and $S_{\mathcal{G}}$ should be similar.

Example: Ranking* from

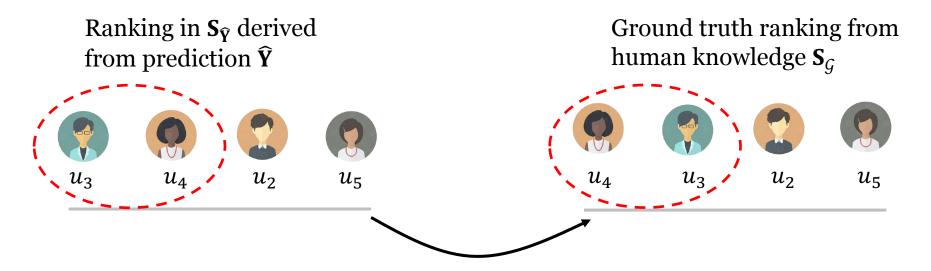


Goal: to make the two ranking lists as similar as possible.

*We omit u_6 for simplification purpose.

Individual fairness optimization: for every node, the two similarity ranking lists with other nodes derived from $S_{\hat{Y}}$ and $S_{\mathcal{G}}$ should be similar.

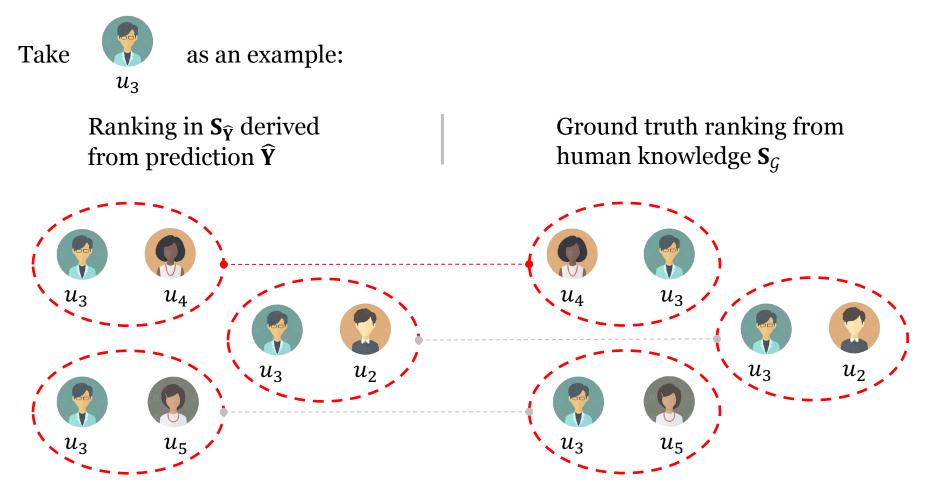
Example: Ranking* from

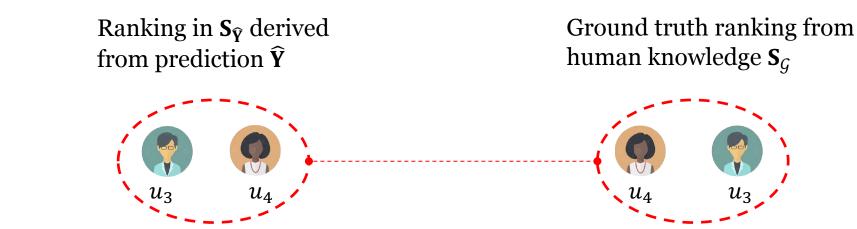


Directly defining a loss between the two ranking lists: **loss is non-differentiable**.

*We omit u_6 for simplification purpose.

We turn to make the **relative ranking order of every pair** to be consistent with that in the ground truth ranking.



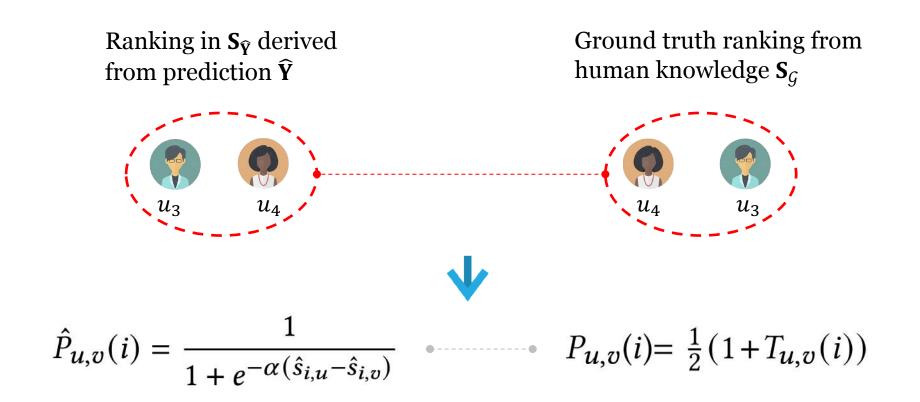


Probability of 'u is ahead of v' is modeled as a logistic sigmoid function:

$$\hat{P}_{u,v}(i) = \frac{1}{1 + e^{-\alpha(\hat{s}_{i,u} - \hat{s}_{i,v})}}$$

We set the corresponding ground truth as $P_{u,v}(i) = \frac{1}{2}(1 + T_{u,v}(i))$

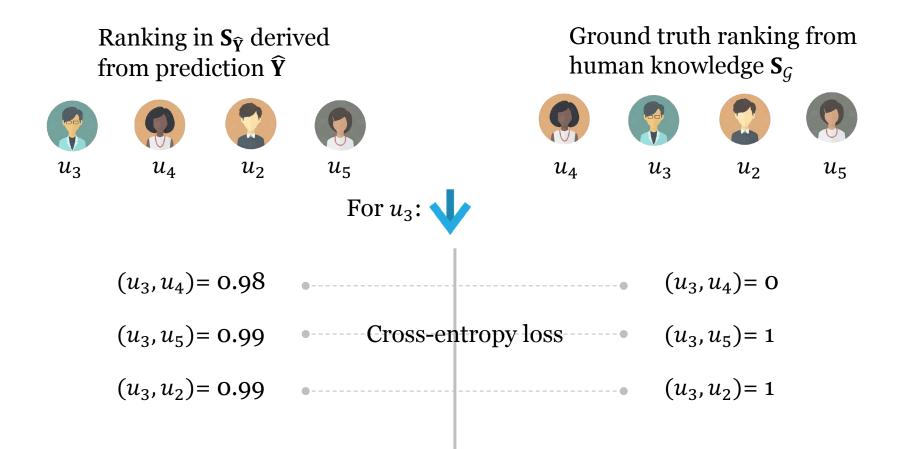
 $T_{u,v}(i) = \begin{cases} +1 & \text{the } u \text{-th one ranks higher} \\ 0 & \text{the } u \text{-th one rank samely} \\ -1 & \text{the } v \text{-th one ranks higher} \end{cases}$



Cross-entropy loss can be an example:

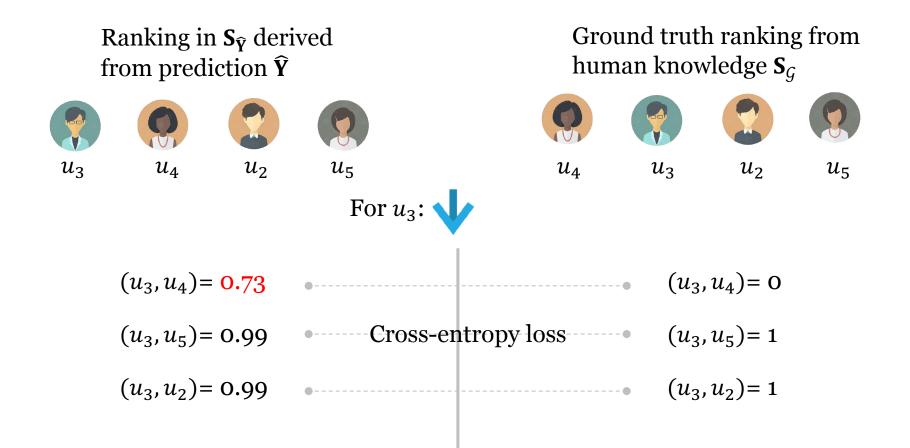
$$\mathcal{L}_{j,m}(i) = -P_{j,m} \log \hat{P}_{j,m} - (1 - P_{j,m}) \log(1 - \hat{P}_{j,m})$$

An example: Assume ranked $\hat{s}_{u_1} = [0.7, 0.3, 0.2, 0.1].$



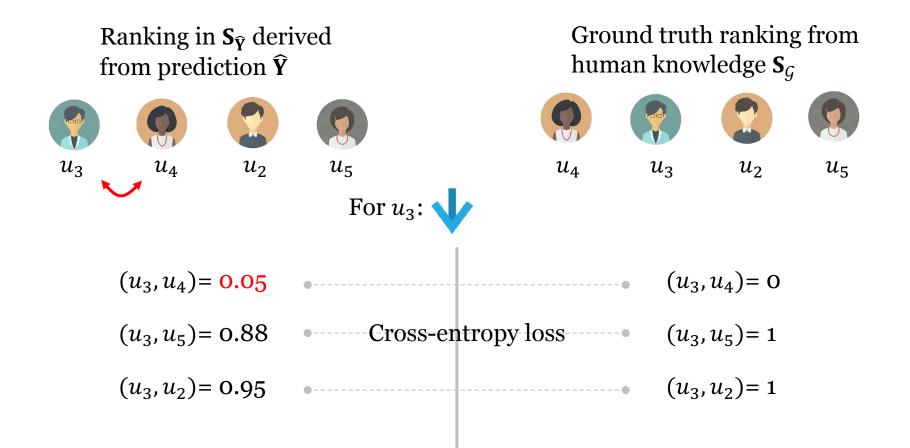
Assume hyper-parameter $\alpha = 10$

An example: Assume **optimized** $\hat{s}_{u_1} = [0.7, 0.6, 0.2, 0.1].$



Assume hyper-parameter $\alpha = 10$

An example: Assume **optimized** $\hat{s}_{u_1} = [0.4, 0.7, 0.2, 0.1].$



Assume hyper-parameter $\alpha = 10$

36

Simple sum of each individual loss: $\mathcal{L}_{\text{fairness}}(i) = \sum \mathcal{L}_{j,m}(i)$ **Loss with training facilitation:** $\mathcal{L}_{\text{fairness}}(i) = \sum \mathcal{L}_{j,m}(i) |\Delta z_{@k}|_{j,m}$ $|\Delta \mathbf{z}_{@k}|_{3,5} = |\mathbf{z}_{@k}(List_{at}, List_{ori}) - \mathbf{z}_{@k}(List_{at}, List_{ori}')|$ u_4 u_3 u_2 u_{5} *List*_{ori}: Predicted ranking. u_{4} u_3 u_2 u_{5} *List_{at}*: Ground truth ranking. u_{5} u_{A} u_2 u_{z} *List*_{ori}': Ranking with $u_3 \& u_5$ switched. Z@k choices: NDCG@K, ERR@K, etc.

Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021

Loss with training facilitation: $\mathcal{L}_{\text{fairness}}(i) = \sum_{j,m} \mathcal{L}_{j,m}(i) |\Delta z_{@k}|_{j,m}$

Disadvantage: High computational cost when *n* (the length of the ranking) is large $(\mathcal{O}(n^2k))$.

Computational Simplification: Restrict node *j* and *m* only within the top-*k* ranked nodes (reduced from $O(n^2k)$ to $O(k^3)$).

$$\mathcal{L}_{\text{fairness}}(i) = \sum_{j,m:j,m\in\mathcal{K}(i)} \mathcal{L}_{j,m}(i) |\Delta z_{@k}|_{j,m}$$

 $\mathcal{K}(i)$ is the set of the top-*k* ranked nodes for node *i*.

Utility loss: cross-entropy loss for model utility (sum of all training nodes);

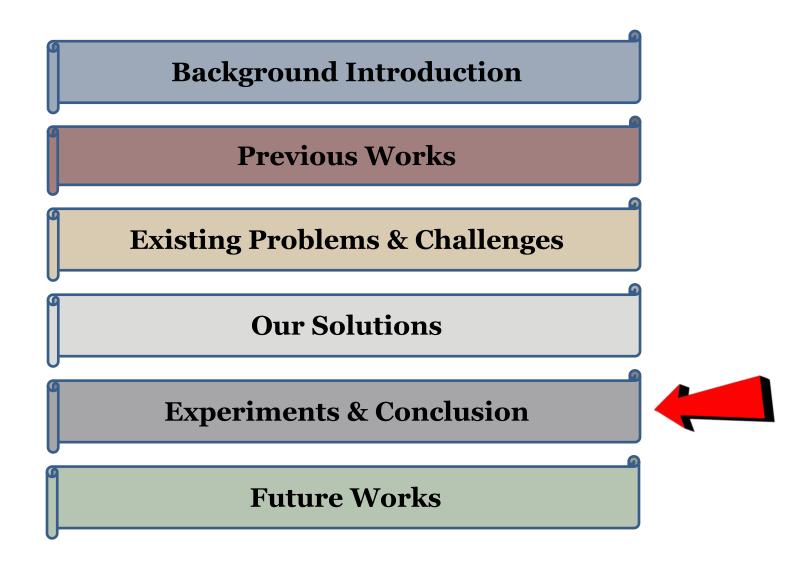
Individual Fairness loss: cross-entropy loss for predicted ranking (sum of all training nodes);

Total loss formulation:

 $\mathcal{L}_{total} = \mathcal{L}_{utility} + \gamma \mathcal{L}_{fairness}$

$$\mathcal{L}_{\text{utility}} = -\sum_{(i,j)\in\mathcal{T}} Y_{ij} \ln \hat{Y}_{ij}$$
$$\mathcal{L}_{\text{fairness}} = \sum_{i} \sum_{j,m:j,m\in\mathcal{K}(i)} \mathcal{L}_{j,m}(i) |\Delta z_{@k}|_{j,m}$$

Outline



Downstream tasks:

- Node classification;
- Link prediction;

Datasets:

- ACM **[Tang et al., 2008]**, Coauthor CS and Coauthor Phy **[Shchur et al., 2018]** for node classification;
- BlogCatalog **[Tang et al., 2009]**, Flickr **[Huang et al., 2017]** and Facebook **[McAuley et al., 2012]** for link prediction;

	Dataset	# Nodes	# Edges	# Features	# Classes
	ACM	16,484	71,980	8,337	9
NC	CS	18,333	81,894	6,805	15
	Phy	34,493	247,962	8,415	5
	BlogCatalog	5,196	171,743	8,189	N/A
LP	Flickr	7,575	239,738	12,047	N/A
	Facebook	4,039	88,234	1,406	N/A

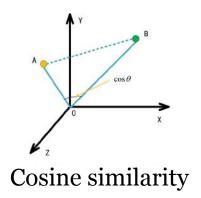
Table 1: Statistics of datasets.

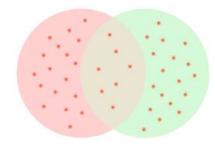
GNN backbones:

- GCN [Kipf et al., 2016] and SGC [Wu et al., 2019] for node classification;
- GCN [Kipf et al., 2016] and GAE [Kipf et al., 2016] for link prediction;

Oracle Similarity Matrix:

- Cosine similarity (feature-based);
- Jaccard similarity (structure-based);





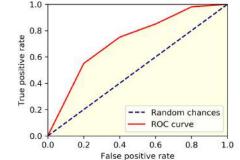
Jaccard similarity

Baselines:

- PFR [Lahoti et al., 2019] (not specially designed for graphs);
- InFoRM [Kang et al., 2020] (introduced before);

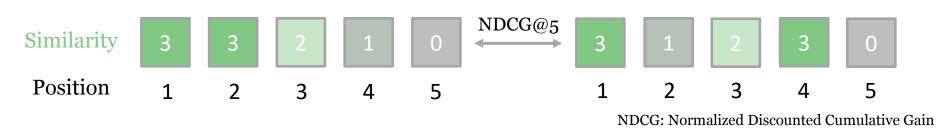
Evaluation Metrics:

- Model utility:
 - Node classification accuracy (ACC);



Area under receiver operating characteristic curve (AUC);

- Individual fairness: NDCG@10 as $z_{@k}$ (k = 10) for ranking similarity evaluation;



Research Questions

- **RQ1:** How well can REDRESS balance the GNN model utility and individual fairness compared with other baselines?
- **RQ2:** How will the individual fairness promotion hyperparameter *γ* affect the performance of REDRESS?
- **RQ3:** How will the choice of **parameter** *k* affect the performance of REDRESS?

- Take performance on ACM as an example.

Our model achieves **comparable** performance on model utility compared with the best ones.

	BB	Model	Feature Similarity		Structural Similarity	
			Utility: ACC	Fairness: NDCG@10	Utility: ACC	Fairness: NDCG@10
	GCN	Vanilla	$72.49 \pm 0.6 (-)$	47.33 ± 1.0 (-)	$72.49 \pm 0.6 (-)$	25.42 ± 0.6 (-)
		InFoRM	$68.03 \pm 0.3 (-6.15\%)$	$39.79 \pm 0.3 (-15.9\%)$	$69.13 \pm 0.5 (-4.64\%)$	$12.02 \pm 0.4 (-52.7\%)$
		PFR	67.88 ± 1.1 (-6.36%)	31.20 ± 0.2 (-34.1%)	$69.00 \pm 0.7 (-4.81\%)$	23.85 ± 1.3 (-6.18%)
ACM		REDRESS (Ours)	$71.75 \pm 0.4 (-1.02\%)$	49.13 ± 0.4 (+3.80%)	$72.03 \pm 0.9 (-0.63\%)$	29.09 ± 0.4 (+14.4%)
ACM	SGC	Vanilla	68.40 ± 1.0 ($-$)	$55.75 \pm 1.1 (-)$	$68.40 \pm 1.0(-)$	37.18 ± 0.6 (-)
		InFoRM	68.81 ± 0.5 (+0.60%)	$48.25 \pm 0.5 (-13.5\%)$	$66.71 \pm 0.6 (-2.47\%)$	$28.33 \pm 0.6 (-23.8\%)$
		PFR	67.97 ± 0.7 (-0.62%)	$34.71 \pm 0.1 (-37.7\%)$	67.78 ± 0.1 (-0.91%)	$37.15 \pm 0.6 (-0.08\%)$
		REDRESS (Ours)	$67.16 \pm 0.2 (-1.81\%)$	58.64 ± 0.4 (+5.18%)	67.77 ± 0.4 (-0.92%)	38.95 ± 0.1 (+4.76%)

Table 2: Node classification results on ACM.

- Take performance on ACM as an example.

Our model achieves **best** performance on individual fairness.

	BB	Model	Feature Similarity		Structural Similarity	
			Utility: ACC	Fairness: NDCG@10	Utility: ACC	Fairness: NDCG@10
	GCN	Vanilla	$72.49 \pm 0.6 (-)$	47.33 ± 1.0 (-)	$72.49 \pm 0.6 (-)$	$25.42 \pm 0.6 (-)$
		InFoRM	68.03 ± 0.3 (-6.15%)	39.79 ± 0.3 (-15.9%)	$69.13 \pm 0.5 (-4.64\%)$	$12.02 \pm 0.4 (-52.7\%)$
АСМ		PFR	67.88 ± 1.1 (-6.36%)	$31.20 \pm 0.2 (-34.1\%)$	69.00 ± 0.7 (-4.81%)	23.85 ± 1.3 (-6.18%)
		REDRESS (Ours)	$71.75 \pm 0.4 (-1.02\%)$	49.13 ± 0.4 (+3.80%)	72.03 ± 0.9 (-0.63%)	29.09 ± 0.4 (+14.4%)
ACM	-	Vanilla	68.40 ± 1.0 (-)	$55.75 \pm 1.1 (-)$	68.40 ± 1.0 (-)	37.18 ± 0.6 (-)
	SGC	InFoRM	68.81 ± 0.5 (+0.60%)	48.25 ± 0.5 (-13.5%)	$66.71 \pm 0.6 (-2.47\%)$	$28.33 \pm 0.6 (-23.8\%)$
		PFR	$67.97 \pm 0.7 (-0.62\%)$	$34.71 \pm 0.1 (-37.7\%)$	67.78 ± 0.1 (-0.91%)	$37.15 \pm 0.6 (-0.08\%)$
		REDRESS (Ours)	67.16 ± 0.2 (-1.81%)	58.64 ± 0.4 (+5.18%)	$67.77 \pm 0.4 (-0.92\%)$	38.95 ± 0.1 (+4.76%)

Table 2: Node classification results on ACM.

- Similar conclusion in link prediction (on Blog as an example).

Our model achieves **comparable** performance on model utility compared with the best ones.

	BB	Model	Feature Similarity		Structural Similarity	
			Utility: AUC	Fairness: NDCG@10	Utility: AUC	Fairness: NDCG@10
	GCN	Vanilla	$85.87 \pm 0.1 (-)$	$16.73 \pm 0.1 (-)$	$85.87 \pm 0.1 (-)$	$32.47 \pm 0.5 (-)$
		InFoRM	79.85 ± 0.6 (-7.01%)	15.57 ± 0.2 (-6.93%)	84.00 ± 0.1 (-2.18%)	26.18 ± 0.3 (-19.4%)
		PFR	84.25 ± 0.2 (-1.89%)	$16.37 \pm 0.0 (-2.15\%)$	83.88 ± 0.0 (-2.32%)	$29.60 \pm 0.4 (-8.84\%)$
Blog		REDRESS (Ours)	86.49 ± 0.8 (+0.72%)	$17.66 \pm 0.2 \; (+5.56\%)$	86.25 ± 0.3 (+0.44%)	34.62 ± 0.7 (+6.62%)
Blog	GAE	Vanilla	$85.72 \pm 0.1(-)$	$17.13 \pm 0.1 (-)$	$85.72 \pm 0.1 (-)$	41.99 ± 0.4 (-)
		InFoRM	$80.01 \pm 0.2 (-6.66\%)$	$16.12 \pm 0.2 (-5.90\%)$	$82.86 \pm 0.0 (-3.34\%)$	$27.29 \pm 0.3 (-35.0\%)$
		PFR	83.83 ± 0.1 (-2.20%)	$16.64 \pm 0.0 (-2.86\%)$	83.87 ± 0.1 (-2.16%)	$35.91 \pm 0.4 (-14.5\%)$
		REDRESS (Ours)	84.67 ± 0.9 (-1.22%)	18.19 ± 0.1 (+6.19%)	86.36 ± 1.5 (+0.75%)	43.51 ± 0.7 (+3.62%)

Table 2: Link prediction results on BlogCatalog (Blog).

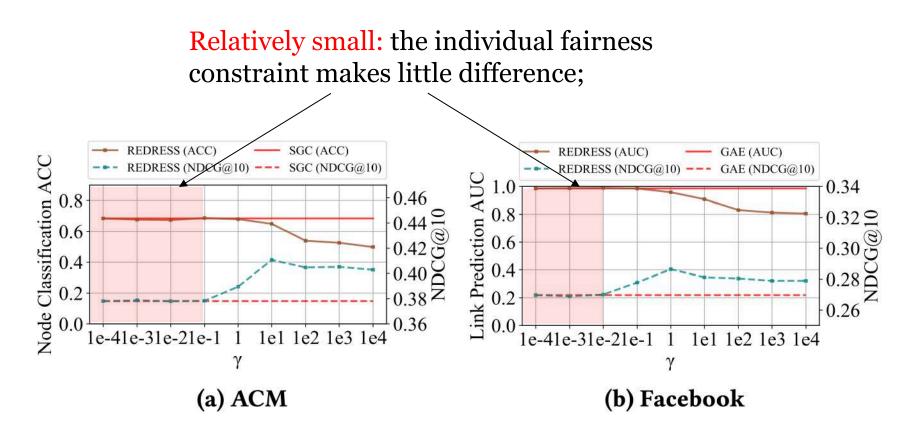
- Similar conclusion in link prediction (on Blog as an example).

Our model achieves **best** performance on individual fairness.

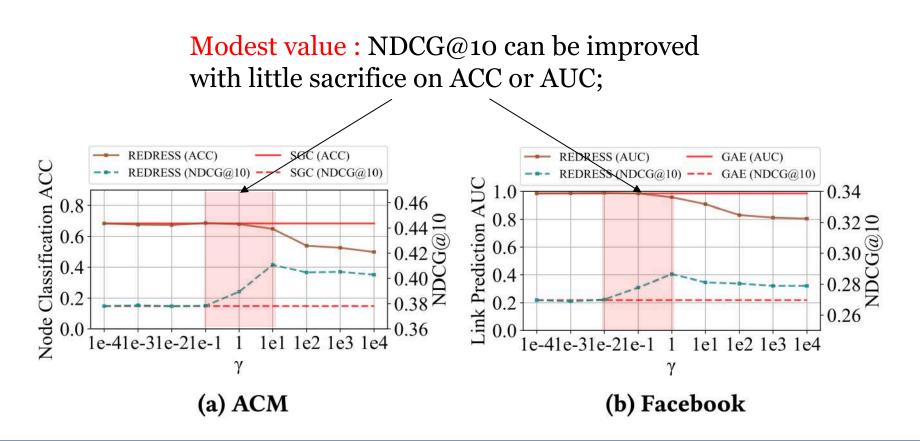
	BB	Model	Feature Similarity		Structural Similarity	
			Utility: AUC	Fairness: NDCG@10	Utility: AUC	Fairness: NDCG@10
	GCN	Vanilla	$85.87 \pm 0.1 (-)$	$16.73 \pm 0.1 (-)$	$85.87 \pm 0.1 (-)$	$32.47 \pm 0.5 (-)$
		InFoRM	79.85 ± 0.6 (-7.01%)	15.57 ± 0.2 (-6.93%)	84.00 ± 0.1 (-2.18%)	$26.18 \pm 0.3 (-19.4\%)$
		PFR	$84.25 \pm 0.2 (-1.89\%)$	$16.37 \pm 0.0 (-2.15\%)$	83.88 ± 0.0 (-2.32%)	$29.60 \pm 0.4 (-8.84\%)$
Blog		REDRESS (Ours)	86.49 ± 0.8 (+0.72%)	$17.66 \pm 0.2 \; (+5.56\%)$	86.25 ± 0.3 (+0.44%)	34.62 ± 0.7 (+6.62%)
Diog	GAE	Vanilla	$85.72 \pm 0.1(-)$	$17.13 \pm 0.1 (-)$	$85.72 \pm 0.1 (-)$	$41.99 \pm 0.4 (-)$
		InFoRM	$80.01 \pm 0.2 (-6.66\%)$	$16.12 \pm 0.2 (-5.90\%)$	$82.86 \pm 0.0 (-3.34\%)$	$27.29 \pm 0.3 (-35.0\%)$
		PFR	83.83 ± 0.1 (-2.20%)	$16.64 \pm 0.0 (-2.86\%)$	83.87 ± 0.1 (-2.16%)	$35.91 \pm 0.4 (-14.5\%)$
		REDRESS (Ours)	84.67 ± 0.9 (-1.22%)	18.19 ± 0.1 (+6.19%)	86.36 ± 1.5 (+0.75%)	43.51 ± 0.7 (+3.62%)

Table 2: Link prediction results on BlogCatalog (Blog).

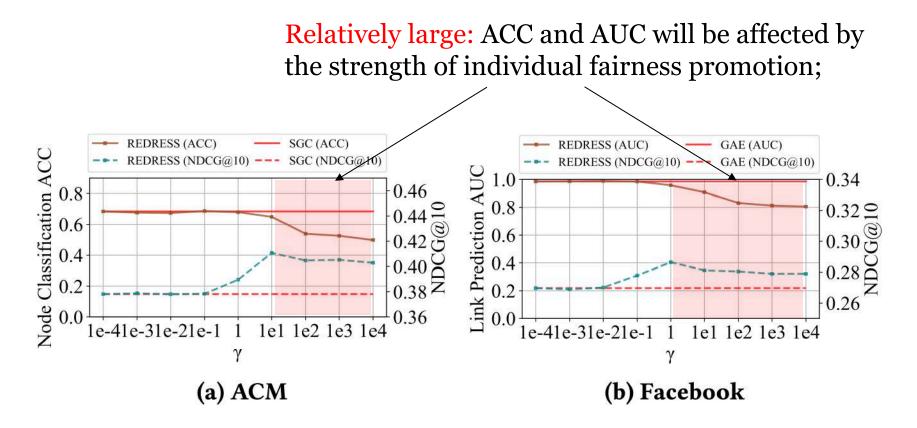
RQ2: How will the individual fairness promotion hyperparameter γ affect the performance of REDRESS?



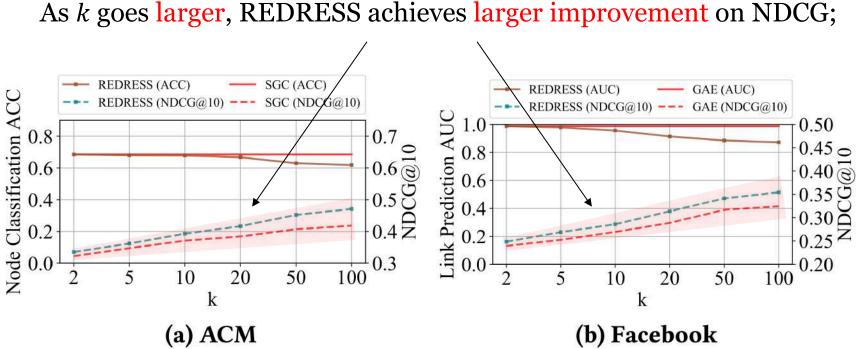
RQ2: How will the individual fairness promotion hyperparameter γ affect the performance of REDRESS?



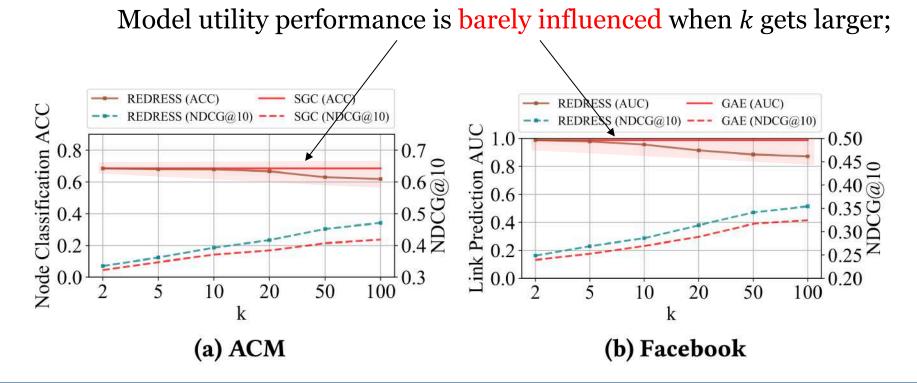
RQ2: How will the individual fairness promotion hyperparameter γ affect the performance of REDRESS?



RQ3: How will the choice of parameter k affect the performance of **REDRESS?**

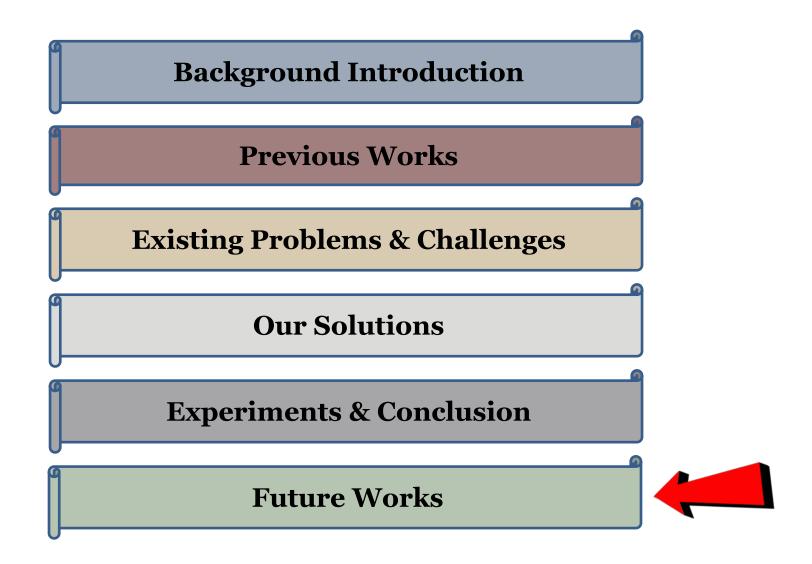


Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021 **RQ3:** How will the choice of parameter *k* affect the performance of REDRESS?



Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021

Outline



- Traditional graph mining algorithm debias;
- Generalization on different graphs (i.e., time-series graphs);
- Scalability on large graphs;

Reference

- **[Kang et al. 2020]** Kang J, He J, Maciejewski R, et al. InFoRM: Individual Fairness on Graph Mining[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 379-389.
- **[Kipf et al. 2016]** Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
- **[Kipf et al. 2016]** Kipf T N, Welling M. Variational graph auto-encoders[J]. arXiv preprint arXiv:1611.07308, 2016.
- **[Wu et al. 2019]** Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks[C]//International conference on machine learning. PMLR, 2019: 6861-6871.
- **[Lahoti et al. 2019]** Lahoti P, Gummadi K P, Weikum G. Operationalizing individual fairness with pairwise fair representations[J]. arXiv preprint arXiv:1907.01439, 2019.
- **[Tang et al. 2008]** Tang J, Zhang J, Yao L, et al. Arnetminer: extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008: 990-998.
- **[Shchur et al. 2018]** Shchur O, Mumme M, Bojchevski A, et al. Pitfalls of graph neural network evaluation[J]. arXiv preprint arXiv:1811.05868, 2018.
- **[Tang et al. 2009]** Tang L, Liu H. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009: 817-826.
- **[Huang et al. 2017]** Huang X, Li J, Hu X. Label informed attributed network embedding[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 2017: 731-739.
- [McAuley et al. 2012] McAuley J J, Leskovec J. Learning to discover social circles in ego networks[C]//NIPS. 2012, 2012: 548-56.

The End

Individual Fairness for Graph Neural Networks: A Ranking based Approach 06/20/2021