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ABSTRACT
Graph Neural Networks (GNNs) have shown great power in learn-

ing node representations on graphs. However, they may inherit his-

torical prejudices from training data, leading to discriminatory bias

in predictions. Although some work has developed fair GNNs, most

of them directly borrow fair representation learning techniques

from non-graph domains without considering the potential prob-

lem of sensitive attribute leakage caused by feature propagation in

GNNs. However, we empirically observe that feature propagation

could vary the correlation of previously innocuous non-sensitive

features to the sensitive ones. This can be viewed as a leakage of

sensitive information which could further exacerbate discrimina-

tion in predictions. Thus, we design two feature masking strategies

according to feature correlations to highlight the importance of con-

sidering feature propagation and correlation variation in alleviating

discrimination. Motivated by our analysis, we propose Fair View

Graph Neural Network (FairVGNN) to generate fair views of fea-

tures by automatically identifying and masking sensitive-correlated

features considering correlation variation after feature propagation.

Given the learned fair views, we adaptively clamp weights of the

encoder to avoid using sensitive-related features. Experiments on

real-world datasets demonstrate that FairVGNN enjoys a better

trade-off between model utility and fairness. Our code is publicly

available at https://github.com/YuWVandy/FairVGNN.
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1 INTRODUCTION
As the world becomes more connected, graph mining is playing

a crucial role in many domains such as drug discovery and rec-

ommendation system [3, 11, 25]. As one of its major branches,

learning informative node representation is a fundamental solu-

tion to many real-world problems such as node classification and

link prediction [30, 35]. Numerous data-driven models have been

developed for learning node representations, among which Graph

Neural Networks (GNNs) have achieved unprecedented success

owing to the combination of neural networks and feature prop-

agation [19, 20, 22]. Despite the significant progress of GNNs in

capturing higher-order neighborhood information [4], leveraging

multi-hop dependencies [30], and recognizing complex local topol-

ogy contexts [32], predictions of GNNs have been demonstrated to

be unfair and perpetuate undesirable discrimination [1, 2, 5, 27, 33].

Recent studies have revealed that historical data may include pre-

vious discriminatory decisions dominated by sensitive features [9,

24]. Thus, node representations learned from such data may explic-

itly inherit the existing societal biases and hence exhibit unfairness

when applied in practice. Besides the sensitive features, network

topology also serves as an implicit source of societal bias [5, 7].

By the principle of network homophily [23], nodes with similar

sensitive features tend to form closer connections than dissim-

ilar ones. Since feature propagation smooths representations of

neighboring nodes while separating distant ones, representations

of nodes in different sensitive groups are further segregated and

their corresponding predictions are unavoidably over-associated

with sensitive features.

Besides above topology-induced bias, feature propagation could

introduce another potential issue, termed as the sensitive informa-

tion leakage. Since feature propagation naturally allows feature

interactions among neighborhoods, the correlation between two

feature channels is likely to vary after feature propagation, which is

termed as correlation variation. As such, some original innocuous

feature channels that have lower correlation to sensitive channels

and encode less sensitive informationmay become highly correlated

to sensitive ones after feature propagation and hence encode more

sensitive information, which is termed as sensitive attribute leakage.
Some research efforts have been invested in alleviating discrimina-

tion made by GNNs. However, they either borrow approaches from

traditional fair representation learning such as adversarial debias-

ing [2, 5] and contrastive learning [21] or directly debiasing node

features and graph topology [1, 7] while overlooking the sensitive

attribute leakage caused by correlation variation.
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In this work, we study a novel and detrimental phenomenon

where feature propagation can vary feature correlations and cause

the leakage of sensitive information to innocuous features. To ad-

dress this issue, we propose a principled framework Fair View

Graph Neural Network (FairVGNN) to effectively learn fair node

representations and avoid sensitive attribute leakage. Our major

contributions are as follows:

• Problem: We investigate the novel phenomenon that feature

propagation could vary feature correlations and cause sensitive

attribute leakage to innocuous feature channels, which could

further exacerbate discrimination in predictions.

• Algorithm: To prevent sensitive attribute leakage, we propose

a novel framework FairVGNN to automatically learn fair views

by identifying and masking sensitive-correlated channels and

adaptively clamping weights to avoid leveraging sensitive-related

features in learning fair node representations.

• Evaluation: We perform experiments on real-world datasets to

corroborate that FairVGNN can approximate the model utility

while reducing discrimination.

Section 2 introduces preliminaries. In Section 3, we formally

introduce the phenomenon of correlation variation and sensitive

attribute leakage in GNNs and design two feature masking strate-

gies to highlight the importance of circumventing sensitive at-

tribute leakage for alleviating discrimination. To automatically

identify/mask sensitive-relevant features, we propose FairVGNN in

Section 4, which consists of a generative adversarial debiasing mod-

ule to prevent sensitive attribute leakage from the input perspective

by learning fair feature views and an adaptive weight clamping

module to prevent sensitive attribute leakage from the model per-

spective by clamping weights of sensitive-correlated channels of

the encoder. In Section 5, we evaluate FairVGNN by performing ex-

tensive experiments. Related work is presented in Section 6. Finally,

we conclude and discuss future work in Section 7.

2 PRELIMINARIES
2.1 Notations
We denote an attributed graph by 𝐺 = (V, E,X,A) where V =

{𝑣1, ..., 𝑣𝑛} is the set of 𝑛 nodes with Y ∈ R𝑛 specifying their labels,

E is the set of𝑚 edges with 𝑒𝑖 𝑗 being the edge between nodes 𝑣𝑖 and

𝑣 𝑗 , andX ∈ R𝑛×𝑑 is the node featurematrixwithX𝑖 = X[𝑖, :]⊤ ∈ R𝑑
indicating the features of node 𝑣𝑖 , X:𝑗 = X[:, 𝑗] ∈ R𝑛 indicating

the 𝑗 th-channel feature. The network topology is described by its

adjacency matrix A ∈ {0, 1}𝑛×𝑛 , where A𝑖 𝑗 = 1 when 𝑒𝑖 𝑗 ∈ E, and
A𝑖 𝑗 = 0 otherwise. Node sensitive features are specified by the

𝑠th-channel of X, i.e., S = X:𝑠 ∈ R𝑛 . Details of all notations used in

this work are summarized in Table 7 in Appendix A.

2.2 Fairness in Machine Learning
Group fairness and individual fairness are two commonly encoun-

tered fairness notions in real life [9]. Group fairness emphasizes

that algorithms should not yield discriminatory outcomes for any

specific demographic group [7] while individual fairness requires

that similar individuals be treated similarly [6]. Here we focus on

group fairness with a binary sensitive feature, i.e., S ∈ {0, 1}𝑛 , but
our framework could be generalized to multi-sensitive groups and

we leave this as one future direction. Following [1, 5, 7], we employ

the difference of statistical parity and equal opportunity between

two different sensitive groups, to evaluate the model fairness:

Δsp = |𝑃 (𝑦 = 1|𝑠 = 0) − 𝑃 (𝑦 = 1|𝑠 = 1) |, (1)

Δeo = |𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0) − 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) |, (2)

where Δsp (Δeo) measures the difference of the independence level

of the prediction 𝑦 (true positive rate) on the sensitive feature 𝑠

between two groups. Since group fairness expects algorithms to

yield similar outcomes for different demographic groups, fairer

machine learning models seek lower Δsp and Δeo.

3 SENSITIVE ATTRIBUTE LEAKAGE AND
CORRELATION VARIATION

In this section, we study the phenomenon where sensitive informa-

tion leaks to innocuous feature channels after their correlations to

the sensitive feature increase during feature propagation in GNNs,

which we define as sensitive attribute leakage . We first empirically

verify feature channels with higher correlation to the sensitive

channel would cause more discrimination in predictions [36]. We

denote the Pearson correlation coefficient of the 𝑖th-feature channel

to the sensitive channel as sensitive correlation and compute it as:

𝝆𝑖 =
E𝑣𝑗∼V

(
(X𝑗𝑖 − `𝑖 ) (S𝑗 − `𝑠 )

)
𝜎𝑖𝜎𝑠

,∀𝑖 ∈ {1, 2, ..., 𝑑}, (3)

where `𝑖 , 𝜎𝑖 denote the mean and standard deviation of the chan-

nel X:𝑖 . Intuitively, higher 𝝆𝑖 indicates that the 𝑖th-feature channel
encodes more sensitive-related information, which would impose

more discrimination in the prediction. To further verify this as-

sumption, we mask each channel and train a 1-layer MLP/GCN

followed by a linear layer to make predictions. As suggested by [1],

we do not add any activation function in the MLP/GCN to avoid

capturing any nonlinearity.

Figure 1(a)-(b) visualize the relationships between the model

utility/bias and the sensitive correlation of each masked feature

channel. Clearly, we see that the discrimination does still exist even

though we mask the sensitive channel (1
st
). Compared with no

masking situation, Δsp and Δeo almost always become lower when

we mask other non-sensitive feature channels (2
nd
-4
th
), which in-

dicates the leakage of sensitive information to other non-sensitive

feature channels. Moreover, we observe the decreasing trend of

Δsp and Δeo when masking channels with higher sensitive correla-

tion since these channels encode more sensitive information and

masking them would alleviate more discrimination.

Following the above observation, one natural way to prevent

sensitive attribute leakage and alleviate discrimination is to mask

the sensitive features as well as its highly-correlated non-sensitive

features. However, feature propagation in GNNs could change fea-

ture distributions of different channels and consequentially vary

feature correlations as shown by Figure 1(c) where we visualize the

sensitive correlations of the first 8 feature channels on German after

a certain number of propagations. We see that correlations between

the sensitive features and other channels change after propagation.

For example, some feature channels that are originally irrelevant to

the sensitive one, such as the 7
th
feature channel, become highly-

correlated and hence encode more sensitive information.

1
We respectively mask each feature channel and train a 1-layer MLP/GCN followed

by a linear prediction layer. Dataset and experimental details are given in Section 5.1.
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Figure 1: Initial empirical investigation on sensitive leakage and correlation variation on German dataset. (a)-(b) visualize
the relationships between model utility/fairness and the sensitive correlation 𝝆𝑖 of each masked feature channel1. Masking
channel with less sensitive correlation leads to more biased predictions and sometimes higher model utility. (c)-(d) shows the
correlation variation caused by feature propagation on German and Credit datasets. In (c), we can see sensitive correlations of
the 2nd and 7th feature channel significantly change after propagation while in (d), the correlations do not change so much.

Table 1: Evaluating model utility and fairness when using
various strategies of feature masking (or no masking).

Encoder Strategy German Credit
AUC F1 Δsp Δeo AUC F1 Δsp Δeo

MLP
S0 71.98 82.32 29.26 19.43 74.46 81.64 11.85 9.61

S1 69.89 81.37 8.25 4.75 73.49 81.50 11.50 9.20

S2 70.54 81.44 6.58 3.24 73.49 81.50 11.50 9.20

GCN
S0 74.11 82.46 35.17 25.17 73.86 81.92 12.86 10.63

S1 73.78 81.65 11.39 9.60 72.92 81.84 12.00 9.70

S2 72.75 81.70 8.29 6.91 72.92 81.84 12.00 9.70

GIN
S0 72.71 82.78 13.56 9.47 74.36 82.28 14.48 12.35

S1 71.66 82.50 3.01 1.72 73.44 83.23 14.29 11.79

S2 70.77 83.53 1.46 2.67 73.28 83.27 13.96 11.34

* S0 : training using the original feature matrix X without any masking.

* S1/S2 : training with masking the top-4 channels based on the rank of 𝝆origin
/𝝆prop

.

After observing that feature propagation could vary feature cor-

relation and cause sensitive attribute leakage, we devise two simple

but effective masking strategies to highlight the importance of con-

sidering correlation variation and sensitive attribute leakage in

alleviating discrimination. Specifically, we first compute sensitive

correlations of each feature channel according to 1) the original

features 𝝆origin and 2) the propagated features 𝝆prop. Then, we
manually mask top-𝑘 feature channels according to the absolute

values of correlation given by 𝝆origin and 𝝆prop, respectively, and
train MLP/GCN/GIN on German/Credit dataset shown in Table 1.

Detailed experimental settings are presented in Section 5. From

Table 1, we have following insightful observations: (1) Within the

same encoder, masking sensitive and its related feature channels

(S1, S2) would alleviate the discrimination while downgrading the

model utility compared with no-masking (S0). (2) GCN achieves

better model utility but causes more bias compared with MLP on

German and Credit. This implies graph structures also encode bias

and leveraging them could aggravate discrimination in predictions,

which is consistent with recent work [5, 7]. (3) Most importantly, S2

achieves lower Δsp,Δeo than S1 for both MLP and GCN on German

because the rank of sensitive correlation changes after feature prop-

agation and masking according to S2 leads to better fairness, which

highlights the importance of considering feature propagation in

determining which feature channels are more sensitive-correlated

and required to be masked. Applying S1 achieves the same util-

ity/bias as S2 on Credit due to less correlation variations shown in

Figure 1(d).

To this end, we argue that it is necessary to consider feature

propagation in masking feature channels in order to alleviate dis-

crimination. However, the correlation variation heavily depends

on the propagation mechanism of GNNs. To tackle this challenge,

we formulate our problem as:

Given an attributed network G = (V, E,X,A) with labels Y for
a subset of nodes V𝑙 ⊂ V , we aim to learn a fair view generator
𝑔
𝚯𝑔

: 𝑔
𝚯𝑔
(X) → X̃with the expectation of simultaneously preserving

task-related information and discarding sensitive information such
that the downstream node classifier 𝑓

𝚯𝑓
: 𝑓

𝚯𝑓
(A, X̃) → Y trained on

X̃ could achieve better trade-off between model utility and fairness.

4 FRAMEWORK
In this section, we give a detailed description of FairVGNN (shown

in Figure 2), which includes the generative adversarial debiasing

module and the adaptive weight clamping module. In the first mod-

ule, we learn a generator that generates different fair views of fea-

tures to obfuscate the sensitive discriminator such that the encoder

could obtain fair node representations for downstream tasks. In the

second module, we propose to clamp weights of the encoder based

on learned fair feature views, and provide a theoretical justification

on its equivalence to minimizing the upper bound of the difference

of representations between two different sensitive groups. Next,

we introduce the details of each component.

4.1 Generative Adversarial Debiasing
This module includes a fair view generator 𝑔

𝚯𝑔
, a GNN-based

encoder 𝑓
𝚯𝑓

, a sensitive discriminator 𝑑
𝚯𝑑

, and a classifier 𝑐
𝚯𝑐

parametrized by 𝚯𝑔,𝚯𝑓 ,𝚯𝑑 ,𝚯𝑐 , respectively. We assume the view

generator 𝑔
𝚯𝑔

to be a learnable latent distribution from which we

sample 𝐾-different masks and generate 𝐾-corresponding views

X̃𝑘 , 𝑘 ∈ {1, 2, ..., 𝐾}. The latent distribution would be updated to-

wards generating less-biased views X̃ and the stochasticity of each

view would enhance the model generalizability. Then each of these
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Figure 2: An overview of the Fair View Graph Neural Net-
work (FairVGNN), with twomainmodules: (a) generative ad-
versarial debiasing to learn fair viewof features and (b) adap-
tive weight clamping to clamp weights of sensitive-related
channels of the encoder.

𝐾-different views X̃𝑘 are fed to the encoder 𝑓
𝚯𝑓

together with the

network topology A to learn node representations H̃𝑘 for down-

stream classifier 𝑐
𝚯𝑐

. Meanwhile, the learned node representations

H̃𝑘 are used by the sensitive discriminator 𝑑
𝚯𝑑

to predict nodes’

sensitive features. This paves us a way to adopt adversarial learning

to obtain the optimal fair view generator 𝑔
𝚯
∗
𝑔
where the generated

views encode as much task-relevant information while discard-

ing as much bias-relevant information as possible. We begin with

introducing the fairness-aware view generator 𝑔
𝚯𝑔

.

4.1.1 Fairness-aware View Generator. As observed in Table 1, dis-

crimination could be traced back to the sensitive features as well

as their highly-correlated non-sensitive features. Therefore, we

propose to learn a view generator that automatically identifies

and masks these features. More specifically, assuming the view

generator as a conditional distribution P
𝐺

parametrized by 𝚯𝑔 ,

since bias originates from the node features X and is further varied

by the graph topology A, the conditional distribution of the view

generator can be further expressed as a joint distribution of the at-

tribute generator and the topological generator as P
𝐺
= PX̃,Ã. Since

our sensitive discriminator 𝑑
𝚯𝑑

is directly trained on the learned

node representations from GNN-based encoder 𝑓
𝚯𝑓

as described

in Section 4.1.3, we already consider the proximity-induced bias

in alleviating discrimination and hence the network topology is

assumed to be fixed here, i.e., P
𝚯𝑔

X̃,Ã
= P

𝚯𝑔

X̃
. We will leave the joint

generation of fair feature and topological views as one future work.

Instead of generating X̃ from scratch that completely loses criti-

cal information for GNN predictions, we generate X̃ conditioned on

the original node featuresX, i.e., P
𝚯𝑔

X̃
= P

𝚯𝑔

X̃
(·|X). Following the pre-

liminary experiments, wemodel the generation process of X̃ as iden-

tifying and masking sensitive features and their highly-correlated

features in X. One natural way is to select features according to

their correlations 𝝆𝑖 to the sensitive features S as defined in Eq. (3).

However, as shown by Figure 1(c), feature propagation in GNNs trig-

gers the correlation variation. Thus, instead of masking according

to initial correlations that might change after feature propagation,

we train a learnable mask for feature selections in a data-driven

fashion. Denote our mask as m = [𝑚1,𝑚2, ...,𝑚𝑑 ] ∈ {0, 1}𝑑 so that:

X̃ = X ⊙ m = [X⊤
1
⊙ m,X⊤

2
⊙ m, ...,X⊤𝑛 ⊙ m], (4)

then learning the conditional distribution of the feature genera-

tor P
𝚯𝑔

X̃
(·|X) is transformed to learning a sampling distribution

of the masker P
𝚯𝑔

m . We assume the probability of masking each

feature channel independently follows a Bernoulli distribution, i.e.,

𝑚𝑖 ∼ Bernoulli(1 − 𝑝𝑖 ),∀𝑖 ∈ {1, 2, ..., 𝑑} with each feature channel

𝑖 being masked with the learnable probability 𝑝𝑖 ∈ R. In this way,

we can learn which feature channels should be masked to achieve

less discrimination through gradient-based techniques. Since the

generator 𝑔
𝚯𝑔

aims to obfuscate the discriminator 𝑑
𝚯𝑑

that pre-

dicts the sensitive features based on the already-propagated node

representations H̃ from the encoder 𝑓
𝚯𝑓

, the generated fair feature

view X̃ would consider the effect of correlation variation by feature

propagation rather than blindly follow the order of the sensitive

correlations computed by the original features X. Generating fair
feature view X̃ and forwarding it through the encoder 𝑓

𝚯𝑓
and the

classifier 𝑐
𝚯𝑐

to make predictions involve sampling masks m from

the categorical Bernoulli distribution, the whole process of which

is non-differentiable due to the discreteness of masks. Therefore,

we apply Gumbel-Softmax trick [14] to approximate the categorical

Bernoulli distribution. Assuming for each channel 𝑖 , we have a learn-

able sampling score 𝝅𝑖 = [𝜋𝑖1, 𝜋𝑖2] with 𝜋𝑖1 score keeping while

𝜋𝑖2 score masking the channel 𝑖 . Then the categorical distribution

Bernoulli(1 − 𝑝𝑖 ) is softened by
2
:

𝑝𝑖 𝑗 =
exp( log(𝜋𝑖 𝑗 )+𝑔𝑖 𝑗𝜏 )∑

2

𝑘=1
exp( log(𝜋𝑖𝑘 )+𝑔𝑖𝑘𝜏 )

,∀𝑗 = 1, 2, 𝑖 ∈ {1, 2, ..., 𝑑}, (5)

where 𝑔𝑖 𝑗 ∼ Gumbel(0, 1) and 𝜏 is the temperature factor control-

ling the sharpness of the Gumbel-Softmax distribution. Then, to

generate X̃ after we sample masks m based on probability 𝑝𝑖1, we

could either directly multiply feature channel X:𝑖 by the probability

𝑝𝑖1 or solely append the gradient of 𝑝𝑖1 to the sampled hard mask
3
,

both of which are differentiable and can be trained end to end. After

we approximate the generator 𝑔
𝚯𝑔

via Gumbel-Softmax, we next

model the GNN-based encoder 𝑓
𝚯𝑓

to capture the information of

both node features X and network topology A.

4.1.2 GNN-based Encoder. In order to learn from both the graph

topology and node features, we employ 𝐿−layer GNNs as our

encoder-backbone to obtain node representations H𝐿 . Different
graph convolutions adopt different propagation mechanisms, re-

sulting in different variations on feature correlations. Here we select

GCN [19], GraphSAGE [13], andGIN [34] as our encoder-backbones.

In order to consider the variation induced by the propagation of

GNN-based encoders, we apply the discriminator 𝑑
𝚯𝑑

and classi-

fier 𝑐
𝚯𝑐

on top of the obtained node representations H𝐿 from the

GNN-based encoders. Since both of the classifier and the discrimi-

nator are to make predictions, one towards sensitive groups and

the other towards class labels, their model architectures are similar

and therefore we introduce them together next.

2
We use 𝑝𝑖1 instead of 𝑝𝑖 thereafter to represent the probability of keeping channel 𝑖 .

3m = m − 𝑝𝑖1 .detach() + 𝑝𝑖1
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4.1.3 Classifier and Discriminator. Given node representations H𝐿

obtained from any 𝐿−layer GNN-based encoder 𝑓
𝚯𝑓

, the classifier

𝑐
𝚯𝑐

and the discriminator 𝑑
𝚯𝑑

predict node labels Ŷ and sensitive

attributes Ŝ as:

Ŷ = 𝑐
𝚯𝑐
(H𝐿) = 𝜎

(
MLP𝑐 (H𝐿)

)
, Ŝ = 𝑑

𝚯𝑑
(H𝐿) = 𝜎

(
MLP𝑑 (H𝐿)

)
, (6)

where we use two different multilayer perceptrons (MLPs): R𝑑
𝐿 →

R for the classifier and the discriminator, and 𝜎 is the sigmoid

operation. After introducing the fairness-aware view generator, the

GNN-based encoder, the MLP-based classifier and discriminator,

we collect them together and adversarially train them with the

following objective function.

4.1.4 Adversarial Training. Our goal is to learn fair views from

the original graph that encode as much task-relevant information

while discarding as much sensitive-relevant information as possible.

Therefore, we aim to optimize the whole framework from both the

fairness and model utility perspectives. According to statistical

parity, to optimize the fairness metric, a fair feature view should

guarantee equivalent predictions between sensitive groups:

𝚯
∗
𝑔 = argmin

𝚯𝑔

Δsp = argmin

𝚯𝑔

|𝑃 (𝑦 = 1|𝑠 = 0) − 𝑃 (𝑦 = 1|𝑠 = 1) |, (7)

where 𝑃 (𝑦 |𝑠) is the predicted distribution given the sensitive feature.
Assuming 𝑦 and 𝑠 are conditionally independent given H̃ [18], to

solve the global minimumof Eq. (7), we leverage adversarial training

and compute the loss of the discriminator and generator L𝑑 ,L𝑔 as:

max

𝚯𝑑

L
d
= E

X̃∼P𝚯𝑔
(X̃|X)
E𝑣𝑖∼V

(
S𝑖 log

(
𝑑
𝚯𝑑
(H̃𝐿𝑖 ))+(1−S𝑖 ) log(1−𝑑𝚯𝑑 (H̃

𝐿
𝑖 )

) )
,

(8)

min

𝚯𝑔

Lg = E
X̃∼P𝚯𝑔

(X̃|X)
E𝑣𝑖∼V

(
𝑑
𝚯𝑑
(H̃𝐿𝑖 ) − 0.5

)
2 + 𝛼 | |m − 1𝑑 | |22, (9)

where H̃𝐿
𝑖
= 𝑓

𝚯𝑓
(X̃𝑖 ,A) and | |m − 1𝑑 | |22 regularizes the mask to

be dense, which avoids masking out sensitive-uncorrelated but

task-critical information. 𝛼 is the hyperparamter. Intuitively, Eq. (8)

encourages our discriminator to correctly predict the sensitive

features of each node under each generated view and Eq. (9) requires

our generator to generate fair feature views that enforce the well-

trained discriminator to randomly guess the sensitive features. In

Theorem 1, we show that the global minimum of Eq. (8)-(9) is

equivalent to the global minimum of Eq. (7):

Theorem 1. Given h̃𝐿 as the representation of a specific node
learned by L layer GNN-based encoder 𝑓

𝚯𝑔
and 𝛼 = 0 in Eq. (9), the

global optimum of Eq. (8)-(9) is equivalent to the one of Eq. (7).

Proof. Based on Proposition 1. in [12] and Proposition 4.1. in [5],

the optimal discriminator is 𝑑𝜽 ∗
𝑑
(h̃𝐿) = 𝑃 (h̃𝐿 |𝑠=1)

𝑃 (h̃𝐿 |𝑠=1)+𝑃 (h̃𝐿 |𝑠=0)
, which

is exactly the probability when discriminator randomly guesses the

sensitive features. Then we further substituted it into Eq. (9) and the

optimal generator is achieved when 𝑑𝜽 ∗
𝑑
(h̃𝐿) = 0.5, i.e., 𝑃 (h̃𝐿 |𝑠 =

1) = 𝑃 (h̃𝐿 |𝑠 = 0). Then we have:

𝑃 (𝑦 = 1|𝑠 = 1) =
∫̃
h𝐿
𝑃 (𝑦 = 1|h̃𝐿)𝑃 (h̃𝐿 |𝑠 = 1)𝑑h̃𝐿

=

∫̃
h𝐿
𝑃 (𝑦 = 1|h̃𝐿)𝑃 (h̃𝐿 |𝑠 = 0)𝑑h̃𝐿 = 𝑃 (𝑦 = 1|𝑠 = 0),

which is obviously the global minimum of Eq. (7). □

Note that node representations H̃𝐿 have already been propagated
in GNN-based encoder 𝑓𝜽𝑓 and therefore, the optimal discriminator

𝑑𝜽 ∗
𝑑
could identify sensitive-related features after correlation varia-

tion. Besides the adversarial training loss to ensure the fairness of

the generated view, the classification loss for training the classifier

𝑐𝜽𝑐 is used to guarantee the model utility:

min

𝜽𝑐
Lc = −E

X̃∼P𝜽𝑔
(X̃|X)
E𝑣𝑖∼V

(
Y𝑖 log

(
𝑐𝜽𝑐 (H̃𝐿𝑖 )

)
+(1−Y𝑖 ) log

(
1−𝑐𝜽𝑐 (H̃𝐿𝑖 )

) )
(10)

4.2 Adaptive Weight Clamping
Although the generator is theoretically guaranteed to achieve its

global minimum by applying adversarial training, in practice the

generated views may still encode sensitive information and the cor-

responding classifier may still make discriminatory decisions. This

is because of the unstability of the training process of adversarial

learning [12] and the entanglement with training classifier.

To alleviate the above issue, we propose to adaptively clamp

weights of the encoder 𝑓
𝚯𝑓

based on the learned masking probabil-

ity distribution from the generator 𝑔
𝚯𝑔

. After adversarial training,

only the sensitive and its highly-correlated features would have

higher probability to be masked and therefore, declining their con-

tributions in H̃𝐿 by clamping their corresponding weights in the

encoder would discourage the encoder from capturing these fea-

tures and hence alleviate the discrimination. Concretely, within

each training epoch after the adversarial training, we compute the

probability of keeping features p ∈ R𝑑 by sampling 𝐾 masks and

calculate their mean p =
∑𝐾
𝑘=1

m𝑘 . Then assuming the weights of

the first layer in the encoder 𝑓
𝚯𝑓

isW𝑓 ,1 ∈ R𝑑1×𝑑 , we clamp it by:

W𝑓 ,1

𝑖 𝑗
=

{
W𝑓 ,1

𝑖 𝑗
, |W𝑓 ,1

𝑖 𝑗
| ≤ 𝜖 ∗ p𝑗

sign(W𝑓 ,1

𝑖 𝑗
) ∗ 𝜖 ∗ p𝑗 , |W𝑓 ,1

𝑖 𝑗
| > 𝜖 ∗ p𝑗

, (11)

where 𝜖 ∈ R is a prefix cutting threshold selected by hyperpa-

rameter tuning and sign : R → {−1, 0, 1} takes the sign of W𝑓 ,1

𝑖 𝑗
.

Intuitively, feature channels masked with higher probability (re-

mained with lower probability p𝑗 ) would have lower threshold

in weight clamping and hence their contributions to the repre-

sentations H̃𝐿 are weakened. Next, we theoretically rationalize

this adaptive weight clamping by demonstrating its equivalence to

minimizing the upper bound of the difference of representations

between two sensitive groups:

Theorem 2. Given a 1-layer GNN encoder 𝑓𝜽𝑓 with row-normalized

adjacency matrix D−1A as the PROP and weight matrix W𝑓 ,1 as
TRAN and further assume that features of nodes from two sensitive
groups in the network independently and identically follow two differ-
ent Gaussian distributions, i.e.,X𝑠1 ∼ N(𝝁𝑠1 , 𝚺𝑠1 ),X𝑠2 ∼ N(𝝁𝑠2 , 𝚺𝑠2 ),
then the difference of representationsH𝑠1−H𝑠2 also follows a Gaussian
with the 2-norm of its mean 𝝁 as:

| |𝝁 | |2 = | | (2𝜒 − 1)W𝑓 ,1Δ𝝁 | |2 ≤ (2𝜒 − 1)
( 𝑑1∑︁
𝑖=1

(
∑︁
𝑟∈S

𝜖p𝑟Δ𝝁𝑟 +
∑︁
𝑘∈NS

𝜖p𝑘Δ𝝁𝑘 )2
)
0.5

(12)

where Δ𝝁 = 𝝁𝑠1 − 𝝁𝑠2 ∈ R𝑑 and S,NS denote the sensitive and

non-sensitive features, and 𝜒 is the network homophily.
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Proof. Substituting the row-normalized adjacencymatrixD−1 (A+
I), we have 𝑓𝜽𝑓 (X) = W𝑓 ,1D−1 (A + I)X, for any pair of nodes com-

ing from two different sensitive groups 𝑣𝑖 ∈ V0, 𝑣 𝑗 ∈ V1, we have:

𝑓𝜽𝑓 (X𝑖 ) − 𝑓𝜽𝑓 (X𝑗 ) = W𝑓 ,1 (D−1 (A + I)X)𝑖 −W𝑓 ,1 (D−1 (A + I)X) 𝑗
=W𝑓 ,1 ( 1

𝑑𝑖 + 1
∑︁

𝑣𝑝 ∈N𝑖∪𝑣𝑖
X𝑝 −

1

𝑑 𝑗 + 1
∑︁

𝑣𝑞 ∈N𝑗∪𝑣𝑗
X𝑞),

(13)

if the network homophily is 𝜒 and further assuming that neigh-

boring nodes strictly obey the network homophily, i.e., among

|N𝑖 ∪ 𝑣𝑖 | = 𝑑𝑖 + 1 neighboring nodes of the center node 𝑣𝑖 , 𝜒 (𝑑𝑖 + 1)
of them come from the same feature distribution as 𝑣𝑖 while (1 −
𝜒) (𝑑𝑖 + 1) of them come from the other feature distribution as 𝑣 𝑗 ,

then symmetrically we have:

1

𝑑𝑖 + 1
∑︁

𝑣𝑝 ∈N𝑖∪𝑣𝑖
X𝑝 ∼ N

(
𝜒𝝁𝑠1 + (1−𝜒)𝝁𝑠2 , (𝑑𝑖 +1)−1 (𝜒𝚺𝑠1 + (1−𝜒)𝚺𝑠2 )

)
,

1

𝑑 𝑗 + 1
∑︁

𝑣𝑞∈N𝑗∪𝑣𝑗
X𝑞 ∼ N

(
𝜒𝝁𝑠2+(1−𝜒)𝝁𝑠1 , (𝑑 𝑗 +1)−1 (𝜒𝚺𝑠2+(1−𝜒)𝚺𝑠1 )

)
.

(14)

Combining Eq. (14) and Eq. (13), the distribution of their dif-

ference would also be a Gaussian 𝑓𝜽𝑓 (X𝑖 ) − 𝑓𝜽𝑓 (X𝑗 ) ∼ N (𝝁, 𝚺),
where:

𝝁 = W𝑓 ,1
(
𝜒𝝁𝑠1 + (1− 𝜒)𝝁𝑠2 − 𝜒𝝁𝑠2 − (1− 𝜒)𝝁𝑠1

)
= (2𝜒−1)W𝑓 ,1Δ𝝁 (15)

𝚺 = W𝑓 ,1
(
(𝑑𝑖+1)−1 (𝜒𝚺𝑠1+(1−𝜒)𝚺𝑠2 )+(𝑑 𝑗+1)−1 (𝜒𝚺𝑠2+(1−𝜒)𝚺𝑠1 )

)
W𝑓 ,1⊤

(16)

Taking the 2−norm on the mean 𝝁, splitting channels into sensi-

tive ones S and non-sensitive ones NS, i.e., {1, 2, ..., 𝑑} = S ∪NS
and expanding 𝝁 based on the input channel, we have:

| | (2𝜒−1)W𝑓 ,1Δ𝝁 | |2 = (2𝜒−1)
( 𝑑1∑︁
𝑖=1

(
∑︁
𝑟∈S

W𝑓 ,1

𝑖𝑟
Δ𝝁𝑟 +

∑︁
𝑘∈NS

W𝑓 ,1

𝑖𝑘
Δ𝝁𝑘 )2

)
0.5
,

(17)

whereW𝑓 ,1

𝑖𝑟
,W𝑓 ,1

𝑖𝑘
represent the weights of the encoder from feature

channel 𝑟 (𝑘) to the hidden neuron 𝑖 . Since we know that |W𝑓 ,1

𝑖𝑟
| ≤

𝜖p𝑟 , |W𝑓 ,1

𝑖𝑘
| ≤ 𝜖p𝑘 ,∀𝑟 ∈ S, 𝑘 ∈ NS, we substitute the upper bound

here into Eq. (17) and finally end up with:

| |𝝁 | |2 = | | (2𝜒 − 1)W𝑓 ,1Δ𝝁 | |2 ≤ (2𝜒 − 1)
( 𝑑1∑︁
𝑖=1

(
∑︁
𝑟∈S

𝜖p𝑟Δ𝝁𝑟 +
∑︁
𝑘∈NS

𝜖p𝑘Δ𝝁𝑘 )2
)
0.5
.

□

The left side of Eq. (12) is the difference of representations be-

tween two sensitive groups and if it is large, i.e., | |𝝁 | |2 is very large,

then the predictions between these two groups would also be very

different, which reflects more discrimination in terms of the group

fairness. Additionally, Theorem 2 indicates that the upper bound

of the group fairness between two sensitive groups depends on

the network homophily 𝜒 , the initial feature difference Δ𝝁 and

the masking probability p. As the network homophily 𝜒 decreases,

more neighboring nodes come from the other sensitive group and

aggregating information of these neighborhoods would smooth

node representations between different sensitive groups and reduce

the bias. To the best of our knowledge, this is the first work relating

the fairness with the network homophily. Furthermore, Eq. (12)

proves that clamping weights of the encoderW𝑓 ,1
upper bounds

the group fairness.

Algorithm 1: The algorithm of FairVGNN

Input: an attributed graph𝐺 = (V, E,X,A,Y) , Classifier 𝑐
𝚯𝑐 , Encoder

𝑓
𝚯𝑓

, Generator 𝑔
𝚯𝑔 , Discriminator 𝑑

𝚯𝑑
, 𝐾

Output: Learned fairness attribute X̃ and Predictions Ŷ
1 while not converged do
2 𝝅 ←W

𝑔
𝚯𝑔

3 for 𝑘 ← 1 to 𝐾 do
4 m𝑘 ∼ Gumbel-softmax(𝝅 ) , X̃𝑘 ← X ⊙ m𝑘 , // Section 4.1.1

5 H̃𝐿,𝑘
𝑖
← 𝑓

𝚯𝑓
(X̃𝑘 ,A) , Ĥ𝐿,𝑘

𝑖
← 𝑠𝑔 (H̃𝐿,𝑘

𝑖
) // Section 4.1.24

6 for epoch← 1 to 𝑒𝑝𝑜𝑐ℎ𝑑 do
7 Ld ←

𝐾∑
𝑘=1

∑
𝑣𝑖 ∈V
[S𝑖 log(𝑑𝚯𝑑 (Ĥ

𝐿,𝑘
𝑖
)) + (1 − S𝑖 ) log(1 − 𝑑𝚯𝑑 (Ĥ

𝐿,𝑘
𝑖
)) ]

8 𝚯𝒅 ← 𝚯𝒅 + ∇𝚯𝑑 L𝑑 , 𝚯𝒇 ← 𝚯𝒇 + ∇𝚯𝑓 L𝑓 // Section 4.1.3

9 for epoch← 1 to 𝑒𝑝𝑜𝑐ℎ𝑐 do

10 Lc ←
𝐾∑
𝑘=1

∑
𝑣𝑖 ∈V
[Y𝑖 log(𝑐𝚯𝑐 (H̃

𝐿,𝑘
𝑖
))+(1−Y𝑖 ) log(1−𝑐𝚯𝑐 (H̃

𝐿,𝑘
𝑖
)) ]

11 𝚯𝒄 ← 𝚯𝒄 − ∇𝚯𝑐 L𝑐 , 𝚯𝒇 ← 𝚯𝒇 − ∇𝚯𝑓 L𝑓 // Section 4.1.3

12 for epoch← 1 to 𝑒𝑝𝑜𝑐ℎ𝑔 do

13 L𝑘
g
←

𝐾∑
𝑘=1

∑
𝑣𝑖 ∈V

| |𝑑
𝚯𝑑
(H̃𝐿,𝑘
𝑖
) − 0.5 | |2

2
,

14 𝚯𝒈 ← 𝚯𝒈 − ∇𝚯𝑔 L𝑔 , 𝚯𝒇 ← 𝚯𝒇 − ∇𝚯𝑓 L𝑓 // Section 4.1.4

15 𝚯𝒇 ← Clamp(𝚯𝒇 ,
𝐾∑
𝑘=1

m𝑘 ) // Section 4.2

16 X̃ =
𝐾∑
𝑘=1

X̃𝑘 , Ŷ = 𝑐
𝚯𝑐 (𝑓𝚯𝑓 (X̃,A))

17 return X̃, Ŷ

4.3 Training Algorithm
Here we present a holistic algorithm of the proposed FairVGNN.

In comparison to vanilla adversarial training, additional compu-

tational requirements of FairVGNN come from generating 𝐾 dif-

ferent masks. However, since within each training epoch we can

pre-compute the masks as Step 4 before adversarial training and

the total number of views 𝐾 becomes constant compared with the

whole time used for adversarial training as Step 6-14, the time com-

plexity is still linear proportional to the size of the whole graph, i.e.,

𝑂 ( |V|+|E|). The total model complexity includes parameters of the

feature masker 𝑂 (2𝑑), the discriminator/classifier 𝑂 (2𝑑𝐿) and the

encoder𝑂 (𝑑∏𝐿
𝑙=1

𝑑𝑙 ), which boils down to𝑂 (max𝑖∈{0,1,...,𝐿} (𝑑𝑖 )𝐿)
and hence the same as any other 𝐿-layer GNN backbones.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

effectiveness of FairVGNN.

5.1 Experimental Settings
5.1.1 Datasets. We validate the proposed approach on three bench-

mark datasets [1, 7] with their statistics shown in Table 2.

Table 2: Basic dataset statistics.
Dataset German Credit Bail
#Nodes 1000 30,000 18,876

#Edges 22,242 1,436,858 321,308

#Features 27 13 18

Sens. Gender Age Race

Label Good/bad Credit Default/no default Payment Bail/no bail

4𝑠𝑔: stopgrad prevents gradients from being back-propagated.
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Table 3: Model utility and bias of node classification. We compare the proposed FairVGNN (i.e., FairV) against state-of-the-art
baselines NIFTY, EDITS, and FairGNN (i.e., Fair) when equiped with various GNN backbones (i.e., GCN, GIN, and SAGE). The
best and runner-up results are colored in red and blue. ↑ represents the larger, the better while ↓ represents the opposite.

Encoder Method German Credit Bail Avg.
(Rank)AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓) AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓) AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓)

GCN

Vanilla 74.11±0.37 82.46±0.89 73.44±1.09 35.17±7.27 25.17±5.89 73.87±0.02 81.92±0.02 73.67±0.03 12.86±0.09 10.63±0.13 87.08±0.35 79.02±0.74 84.56±0.68 7.35±0.72 4.96±0.62 9.17

NIFTY 68.78±2.69 81.40±0.54 69.92±1.14 5.73±5.25 5.08±4.29 71.96±0.19 81.72±0.05 73.45±0.06 11.68±0.07 9.39±0.07 78.20±2.78 64.76±3.91 74.19±2.57 2.44±1.29 1.72±1.08 9.69

EDITS 69.41±2.33 81.55±0.59 71.60±0.89 4.05±4.48 3.89±4.23 73.01±0.11 81.81±0.28 73.51±0.30 10.90±1.22 8.75±1.21 86.44±2.17 75.58±3.77 84.49±2.27 6.64±0.39 7.51±1.20 9.89

FairGNN 67.35±2.13 82.01±0.26 69.68±0.30 3.49±2.15 3.40±2.15 71.95±1.43 81.84±1.19 73.41±1.24 12.64±2.11 10.41±2.03 87.36±0.90 77.50±1.69 82.94±1.67 6.90±0.17 4.65±0.14 9.17

FairVGNN 72.41±2.10 82.14±0.42 70.16±0.86 1.71±1.68 0.88±0.58 71.34±0.41 87.08±0.74 78.04±0.33 5.02±5.22 3.60±4.31 85.68±0.37 79.11±0.33 84.73±0.46 6.53±0.67 4.95±1.22 5.67

GIN

Vanilla 72.71±1.44 82.78±0.50 73.84±0.54 13.56±5.23 9.47±4.49 74.36±0.21 82.28±0.64 74.02±0.73 14.48±2.44 12.35±2.86 86.14±0.25 76.49±0.57 81.70±0.67 8.55±1.61 6.99±1.51 9.56

NIFTY 67.61±4.88 80.46±3.06 69.92±3.64 5.26±3.24 5.34±5.67 70.90±0.24 84.05±0.82 75.59±0.66 7.09±4.62 6.22±3.26 82.33±4.61 70.64±6.73 74.46±9.98 5.57±1.11 3.41±1.43 8.56

EDITS 69.35±1.64 82.80±0.22 72.08±0.66 0.86±0.76 1.72±1.14 72.35±1.11 82.47±0.85 74.07±0.98 14.11±14.45 15.40±15.76 80.19±4.62 68.07±5.30 73.74±5.12 6.71±2.35 5.98±3.66 11.36

FairGNN 72.95±0.82 83.16±0.56 72.24±1.44 6.88±4.42 2.06±1.46 68.66±4.48 79.47±5.29 70.33±5.50 4.67±3.06 3.94±1.49 86.14±0.89 73.67±1.17 77.90±2.21 6.33±1.49 4.74±1.64 7.64

FairVGNN 71.65±1.90 82.40±0.14 70.16± 0.32 0.43±0.54 0.34±0.41 71.36±0.72 87.44±0.23 78.18±0.20 2.85±2.01 1.72±1.80 83.22±1.60 76.36±2.20 83.86±1.57 5.67±0.76 5.77±1.26 5.44

SAGE

Vanilla 75.74±0.69 81.25±1.72 72.24±1.61 24.30±6.93 15.55±7.59 74.58±1.31 83.38±0.77 75.28±0.83 15.65±1.30 13.34±1.34 90.71±0.69 80.99±0.55 86.72±0.48 2.16±1.53 0.84±0.55 7.31

NIFTY 72.05±2.15 79.20±1.19 69.60±1.50 7.74±7.80 5.17±2.38 72.89±0.44 82.60±1.25 74.39±1.35 10.65±1.65 8.10±1.91 92.04±0.89 77.81±6.03 84.11±5.49 5.74±0.38 4.07±1.28 8.06

EDITS 69.76±5.46 81.04±1.09 71.68±1.25 8.42±7.35 5.69±2.16 75.04±0.12 82.41±0.52 74.13±0.59 11.34±6.36 9.38±5.39 89.07±2.26 77.83±3.79 84.42±2.87 3.74±3.54 4.46±3.50 11.36

FairGNN 65.85±9.49 82.29±0.32 70.64±0.74 7.65±8.07 4.18±4.86 70.82±0.74 83.97±2.00 75.29±1.62 6.17±5.57 5.06±4.46 91.53±0.38 82.55±0.98 87.68±0.73 1.94±0.82 1.72±0.70 5.83

FairVGNN 73.84±0.52 81.91±0.63 70.00±0.25 1.36±1.90 1.22±1.49 74.05±0.20 87.84±0.32 79.94±0.30 4.94±1.10 2.39±0.71 91.56±1.71 83.58±1.88 88.41±1.29 1.14±0.67 1.69±1.13 2.92

5.1.2 Baselines. Several state-of-the-art fair node representation
learning models are compared with our proposed FairVGNN. We di-

vide them into two categories: (1)Augmentation-based: this type
of methods alleviates discrimination via graph augmentation, where

sensitive-related information is removed by modifying the graph

topology or node features. NIFTY [1] simultaneously achieves the

Counterfactual Fairness and the stability by contrastive learning.

EDITS [7] approximates the inputs’ discrimination via Wasser-

stein distance and directly minimizes it between sensitive and non-

sensitive groups by pruning the graph topology and node features.

(2)Adversarial-based: The adversarial-based methods enforce the

fairness of node representations by alternatively training the en-

coder to fool the discriminator and the discriminator to predict the

sensitive attributes. FairGNN [5] deploys an extra sensitive feature

estimator to increase the amount of sensitive information Since

different GNN-backbones may cause different levels of sensitive

attribute leakage, we consider to equip each of the above three

bias-alleviating methods with three GNN-backbones: GCN [19],

GIN [34], GraphSAGE [13], e.g., GCN-NIFTY represents the GCN

encoder with NIFTY.

5.1.3 Setup. Our proposed FairVGNN is implemented using PyTorch-

Geometric [10]. For EDITS
5
, NIFTY

6
and FairGNN

7
, we use the

original code from the authors’ GitHub repository. We aim to pro-

vide a rigorous and fair comparison between different models on

each dataset by tuning hyperparameters for all models individually

and detailed hyperparamter configuration of each baseline is in

Appendix B.2. Following [1] and [7], we use 1-layer GCN, GIN

convolution and 2-layer GraphSAGE convolution respectively as

our encoder 𝑓
𝚯𝑓

, and use 1 linear layer as our classifier 𝑐
𝚯𝑐

and

discriminator 𝑑
𝚯𝑑

. The detailed GNN architecture is described in

Appendix B.1. We fix the number of hidden unit of the encoder 𝑓
𝚯𝑓

as 16, the dropout rate as 0.5, the number of generated fair feature

views during each training epoch 𝐾 = 10. The learning rates and

the training epochs of the generator 𝑔
𝚯𝑔

, the discriminator 𝑑
𝚯𝑑

, the

classifier 𝑐
𝚯𝑐

and the encoder 𝑓
𝚯𝑓

are searched from {0.001, 0.01}
and {5, 10}, the prefix cutting threshold 𝜖 in Eq. (11) is searched

from {0.01, 0.1, 1}, the whole training epochs as 200, 300, 400, and
𝛼 ∈ {0, 0.5, 1}. We use the default data splitting following [1, 7] and

experimental results are averaged over five repeated executions

with five different seeds to remove any potential initialization bias.

5
https://github.com/yushundong/edits

6
https://github.com/chirag126/nifty

7
https://github.com/EnyanDai/FairGNN

5.2 Node Classification
5.2.1 Performance comparison. The model utility and fairness of

each baseline is shown in Table 3. We observe that our FairVGNN

consistently performs the best compared with other bias-alleviating

methods in terms of the average rank for all datasets and across all

evaluation metrics, which indicates the superiority of our model in

achieving better trade-off between model utility and fairness. Since

no fairness regularization is imposed on GNN encoders equipped

with vanilla methods, they generally achieve better model utility.

However for this reason, sensitive-related information is also com-

pletely free to be encoded in the learned node representations and

hence causes higher bias. To alleviate such discrimination, all other

methods propose different regularizations to constrain sensitive-

related information in learned node representations, which also

remove some task-related information and hence sacrifice model

utility as expected in Table 3. However, we do observe that our

model can yield lower biased predictions with less utility sacrifice,

which is mainly ascribed to two reasons: (1) We generate differ-

ent fair feature views by randomly sampling masks from learned

Gumbel-Softmax distribution and make predictions. This can be

regarded as a data augmentation technique by adding noise to

node features, which decreases the population risk and enhances

the model generalibility [26] by creating novel mapping from aug-

mented training points to the label space. (2) The weight clamping

module clamps weights of encoder based on feature correlations to

the sensitive feature channel, which adaptively remove/keep the

sensitive/task-relevant information.

5.2.2 Ablation study. Next we conduct ablation study to fully un-

derstand the effect of each component of FairVGNN on alleviating

discrimination. Concretely, we denote FairV w/o fm as removing

the module of generating fair feature views, FairV w/o ad wc as
removing the module of adaptive weight clamping, and FairV w/o
fm&ad wc as removing both of these two modules. Since comput-

ing thresholds in adaptive weight clamping needs the probability

of feature masking from fair feature view generation in Eq. (11), we

instead directly take the prefix value 𝜖 without p𝑖 as our cutting
threshold in FairV w/o fm. The utility and bias of these variants are

presented in Table 4. We observe that FairV w/o fm and FairV w/o
ad wc perform worse than FairV, which validates the effectiveness

of different components in FairV for learning fair node represen-

tations. Furthermore, the worse performance of FairV w/o fm&ad
wc than FairV w/o fm and FairV w/o wc indicates the proposed two

modules alleviate discrimination from two different aspects and

https://github.com/yushundong/edits
https://github.com/chirag126/nifty
https://github.com/EnyanDai/FairGNN


KDD ’22, August 14–18, 2022, Washington, DC, USA Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler Derr

Table 4: Model utility and bias of node classification of different variants of FairVGNN. The best and runner-up results are
colored in red and blue. ↑ represents the larger, the better while ↓ represents the opposite.

Encoder Model Variants German Credit Bail
AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓) AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓) AUC (↑) F1 (↑) ACC (↑) Δsp (↓) Δeo (↓)

GCN

FairV 72.69± 1.67 81.86± 0.49 69.84±0.41 0.77± 0.39 0.46± 0.34 71.34±0.41 87.08±0.74 78.04±0.33 5.02±5.22 3.60±4.31 85.68±0.37 79.11±0.33 84.73±0.46 6.53±0.67 4.95±1.22
FairV w/o fm 73.63± 1.14 82.28±0.28 70.88±1.09 5.56±3.89 4.41±3.59 72.51±0.32 86.15±2.18 77.83±2.15 6.94±2.86 4.64±2.73 86.98±0.32 78.08±0.53 84.59±0.29 7.24±0.26 5.75±0.68
FairV w/o wc 72.08± 1.83 82.72± 0.50 71.04± 1.23 3.19± 3.51 0.59± 1.12 71.80±0.47 87.27±0.47 78.47±0.34 9.05±4.55 5.94±3.61 85.93±0.38 79.22±0.29 85.38±0.25 6.61±0.48 5.82±0.66
FairV w/o fm&wc 74.97±0.94 82.30±0.67 70.8±0.88 7.74±5.05 4.56±4.15 73.09±0.41 84.48±2.14 76.40±2.29 11.91±2.34 9.27±1.98 86.44±0.16 78.75±0.27 84.41±0.28 8.32±0.60 6.34±0.32

GIN

FairV 71.65±1.90 82.40±0.14 70.16±0.32 0.43±0.54 0.34±0.41 71.36±0.72 87.44±0.23 78.18±0.20 2.85±2.01 1.72±1.80 83.22±1.60 76.36±2.20 83.86±1.57 5.67±0.76 5.77±1.26
FairV w/o fm 73.76±0.77 83.06±0.67 71.68±1.63 2.76±2.64 0.57±0.47 71.15±0.63 87.09±0.7 78.29±0.53 3.36±2.34 1.86±1.19 85.12±0.54 77.06±0.83 83.13±1.19 6.80±0.28 5.97±0.64
FairV w/o wc 72.65±1.65 82.70±0.30 71.20±1.01 3.44±3.19 0.97±0.9 71.13±0.59 87.96±0.25 80.04±0.22 3.16±1.28 1.47±0.72 85.09±2.36 79.07±2.70 85.85±2.13 5.24±1.41 4.33±2.05
FairV w/o fm&wc 73.41±1.17 83.20±0.44 72.40±1.29 5.70±4.57 1.01±1 72.73±0.32 86.10±0.59 77.90±0.63 6.66±1.10 3.97±0.41 86.32±1.60 79.28±1.39 86.02±0.40 7.48±0.71 7.43±2.38

SAGE

FairV 73.84±0.52 81.91±0.63 70.00±0.25 1.36±1.90 1.22±1.49 74.05±0.20 87.84±0.32 79.94±0.30 4.94±1.10 2.39±0.71 91.56±1.71 83.58±1.88 88.41±1.29 1.14±0.67 1.69±1.13
FairV w/o fm 73.98±1.40 81.36±1.45 70.00±1.50 3.67±2.80 1.55±2.01 73.58±0.68 83.18±2.32 74.97±2.49 7.23±3.91 5.05±3.17 91.96±0.57 84.04±1.01 88.69±0.79 1.51±1.17 1.59±0.35
FairV w/o wc 73.93±2.16 82.02±0.72 70.16±1.25 2.80±2.79 0.90±1.06 74.05±0.42 88.10±0.30 80.16±0.19 5.09±1.30 2.67±0.92 92.01±0.74 84.64±0.91 89.24±0.58 2.99±0.94 1.07±1.19
FairV w/o fm&wc 73.87±1.62 80.09±1.73 70.08±1.17 6.18±1.31 4.68±2.38 74.57±0.14 81.91±0.92 73.61±1.02 7.27±3.22 5.03±3.01 92.05±0.89 83.40±1.79 88.44±1.02 3.51±0.87 2.05±1.19
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Figure 3: Model bias without the discriminator/generator.

their effects could be accumulated together. In most cases, FairV
w/o fm achieves more bias than FairV w/o ad wc. This is because
the original clamping threshold of sensitive feature channels 𝜖 ∗ p𝑖
would be replaced by a higher threshold 𝜖 , which allows more

sensitive information leakage to predictions.

5.3 Further Probe
5.3.1 Does adversarial training work? We first remove the weight

clamping to solely study the effect of adversarial training, and then

remove the discriminator/generator respectively by setting their

corresponding training epochs to be 0 and denote the correspond-

ing models as FairVGNN w/o wc&d and FairVGNN w/o wc&g.
We re-conduct the node classification with five different initializa-

tions following the previous setting and report the average bias in

Figure 3. We can clearly see that after removing discriminator or

generator, the model bias becomes even higher in both situations,

which indicates the importance of the competition between the

discriminator and the generator in improving the discriminative

power of discriminator to recognize sensitive features and the gen-

erating power of generator to generate fair feature views. Moreover,

since the discriminator in FairVGNN w/o wc&g can still recognize

the sensitive features and then guide the encoder to extract less

sensitive-related information, the bias of FairVGNN w/o wc&g is

lower than FairVGNN w/o wc&d in most cases.

5.3.2 Does adaptive weight clamping work? To demonstrate the

advantages of the proposed adaptive weight clamping, here we

compare it with the non-adaptive weight clamping and spectral

normalization, which is another technique of regularizing weight

matrix to enhance the model robustness and counterfactual fair-

ness [1]. The prefix cutting thresholds in both the adaptive and

non-adaptive weight clamping are set to be the same as the best

ones tuned in Table 3 for SAGE/GCN/GIN to ensure the fair com-

parison. As shown in Table 5, we can see that except for GIN, the

adaptive weight clamping always achieves lower bias while not

hurting so much model utility. This is because for sensitive-related

feature channels, multiplying masking probability by the prefix

Table 5: Comparison with different weight regularization.
Dataset
(Model) Strategy AUC (↑) ACC (↑) F1 (↑) Δsp (↓) Δeo (↓)

German
(SAGE)

Ad wc 73.84+0.52 70.00+0.25 81.91+0.63 1.36+1.90 1.22+1.49

Wc 72.43+1.60 70.48+0.85 82.03+0.82 4.85+4.10 2.50+2.12

Sn 73.00+1.53 70.00+1.07 81.82+0.59 3.74+3.22 1.89+1.08

Credit
(GIN)

Ad wc 74.05±0.20 79.94±0.19 87.84±0.32 4.94±1.10 2.39±0.71
Wc 73.20±1.20 79.03±1.09 87.23±0.94 7.03±4.58 4.74±3.47
Sn 71.12±0.55 78.54±2.00 86.53±1.90 2.60±0.73 0.87±0.54

Bail
(GCN)

Ad wc 85.68+0.37 84.73+0.46 79.11+0.33 6.53+0.67 4.95+1.22

Wc 85.97+0.45 85.12+0.26 79.08+0.28 6.86+0.47 5.85+0.83

Sn 86.10+0.61 85.69+0.42 79.66+0.63 7.53+0.17 6.43+0.81

* Ad wc: adaptively clamp weights of the encoder;Wc: clamp weights of the encoder; and

Sn: spectral normalization of the encoder
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Figure 4: Results of different prefix cutting threshold.
threshold would even lower the threshold and prevent more sensi-

tive information from leaking to prediction through the encoder.

We also investigate the influence of prefix cutting threshold 𝜖 in

Eq. (11) on the model bias/utility. Higher 𝜖 indicates less weight

clamping on the encoder and more sensitive-related information is

leveraged in predictions, which leads to higher bias.

6 RELATEDWORK
Most prior work on GNNs exclusively focus on optimizing the

model utility while totally ignoring the bias encoded in the learned

node representations, which would unavoidably cause social risks

in high-stake discriminatory decisions [7]. FairGNN [5] leverages a

sensitive feature estimator to enhance the amount of the sensitive

attributes, which greatly benefits their adversarial debiasing proce-

dure. NIFTY [1] proposes a novel triplet-based objective function

and a layer-wise weight normalization using the Lipschitz constant

to promote counterfactual fairness and stability of the resulted node

representations. EDITS [7] systematically summarizes the biased

node representation learning into attribute bias and structure bias,

and employs the Wasserstein distance approximator to alternately

debias node features and network topology. More recently, REF-

EREE [8] was proposed to provide structural explanations of bias

in GNNs. Different from previous work, we study a novel prob-

lem that feature propagation could cause correlation variation and
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sensitive leakage to innocuous features, and our proposed frame-

work FairVGNN expects to learn which feature channels should be

masked to alleviate discrimination considering the effect of corre-

lation variation. Recently, others have also explored this concept

of varying correlation during feature propagation towards devel-

oping deeper GNNs [16]. Besides the fairness issue by sensitive

attributes, bias can also come from the node degree [28], graph

condensation[17], or even class distribution [29], which we leave

for future investigations.

7 CONCLUSION
In this paper, we focus on alleviating discrimination in learned

node representations and made predictions on graphs from the

perspective of sensitive leakage to innocuous features. Specifically,

we empirically observe a novel problem that feature propagation

could vary feature correlation and further cause sensitive leakage to

innocuous feature channels, which may exacerbate discrimination

in predictions. To tackle this problem, we propose FairVGNN to

automatically mask sensitive-correlated feature channels consid-

ering the effect of correlation variation after feature propagation

and adaptively clamp weights of encoder to absorb less sensitive

information. Experimental results demonstrate the effectiveness of

the proposed FairVGNN framework in achieving better trade-off

between utility and fairness than other baselines. Some interesting

phenomena are also observed such as the variation of correlation

depends on different datasets, and the group fairness is related

to the network homophily. Thus, one future direction would be

to theoretically analyze the relationships among feature propaga-

tion, network homophily and correlation variation. Furthermore,

we plan to leverage self-supervised learning [15, 31] to constrain

the bias encoded in the learned node representation, and consider

fairness in multi-sensitive groups in future work.
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Table 6: Detailed comparison with different weight regularization strategies.

Model Strategy German Credit Bail
AUC (↑) ACC (↑) F1 (↑) Δsp (↓) Δeo (↓) AUC (↑) ACC (↑) F1 (↑) Δsp (↓) Δeo (↓) AUC (↑) ACC (↑) F1 (↑) Δsp (↓) Δeo (↓)

GCN
Ad wc 72.41+2.10 70.16+0.86 82.15+0.42 1.71+1.68 0.88+0.58 71.34+0.41 78.04+0.33 87.08+0.74 5.02+5.22 3.60+4.31 85.68+0.37 84.73+0.46 79.11+0.33 6.53+0.67 4.95+1.22

Wc 73.34+0.91 70.08+0.59 81.91+0.38 4.54+2.98 4.22+3.35 69.61+4.11 77.79+0.98 86.70+0.72 4.67+4.01 3.48+3.02 85.97+0.45 85.12+0.26 79.08+0.28 6.86+0.47 5.85+0.83

Sn 71.15+0.95 70.24+0.48 82.01+0.35 3.94+5.37 2.82+3.76 70.16+2.65 75.96+1.40 84.87+2.03 5.67+4.53 4.45+3.62 86.10+0.61 85.69+0.42 79.66+0.63 7.53+0.17 6.43+0.81

GIN
Ad wc 71.65+1.90 70.16+0.32 82.40+0.14 0.43+0.54 0.34+0.41 74.05+0.42 80.16+0.19 88.10+0.30 5.09+1.30 2.67+0.92 83.22+1.60 83.86+1.57 76.36+2.20 5.67+0.76 5.77+1.26

Wc 71.62+2.32 71.04+0.60 82.76+0.22 1.82+0.82 0.48+0.40 73.20+1.20 79.03+1.09 87.23+0.94 7.03+4.58 4.74+3.47 84.67+0.67 84.79+1.45 78.43+1.11 7.73+0.44 6.96+1.26

Sn 71.25+1.69 72.40+1.10 82.98+0.68 7.73+5.03 2.37+1.42 71.12+0.55 78.54+2.00 86.53+1.90 2.60+0.73 0.87+0.54 85.47+0.74 85.26+1.28 79.13+1.08 7.07+1.72 5.90+2.06

SAGE
Ad wc 73.84+0.52 70.00+0.25 81.91+0.63 1.36+1.90 1.22+1.49 74.05+0.20 79.94+0.30 87.84+0.32 4.94+1.10 2.39+0.71 91.56+1.71 88.41+1.29 83.58+1.88 1.14+0.67 1.69+1.13

Wc 72.43+1.60 70.48+0.85 82.03+0.82 4.85+4.10 2.50+2.12 73.20+1.21 79.03+1.09 87.23+0.94 7.03+4.58 4.74+3.47 91.48+0.57 88.42+0.78 83.51+0.88 3.45+1.06 1.89+1.27

Sn 73.00+1.53 70.00+1.07 81.82+0.59 3.74+3.22 1.89+1.08 73.86+0.54 78.57+1.70 86.55+1.67 5.27+3.26 3.78+2.51 93.36+1.75 89.88+1.07 85.32+1.71 2.55+1.19 1.52+1.27

* Ad wc: adaptively clamp weights of the encoder; Wc: clamp weights of the encoder; and Sn: spectral normalization of the encoder.

A SUMMARY OF NOTATIONS
To facilitate understanding, we present a summary of commonly

utilized notations and the corresponding descriptions in Table 7.

Table 7: Notations commonly used in this paper and the cor-
responding descriptions.

Notations Definitions or Descriptions
𝐺 input graph

V , E node, edge set

A adjacency matrix

X node attribute matrix

m feature mask

𝜏 temperature factor

𝜒 network homophily

𝜖 prefix cutting threshold

S sensitive feature vector

X̃ generated node attribute matrix

Y one-hot encoded label matrix for all nodes

Δsp,Δeo statistical parity and equality of opportunity

𝑦, 𝑠 class label and sensitive group label

𝜌𝑖 the Pearson correlation coefficient of the 𝑖th channel

H𝐿 representation learned after 𝐿-layers GNNs

W𝑓 ,1
weight of the first layer of the encoder

𝑔,𝑑, 𝑓 , 𝑐 generator, discriminator, encoder and classifier

B EXPERIMENTAL SETTINGS
B.1 Detailed Model Architecture
A unified template of a graph convolutional layer is formalized as:

h𝑙𝑖 = TRAN
𝑙 (PROP𝑙 (h𝑙−1𝑖 , {h𝑙−1𝑗 | 𝑗 ∈ N𝑖 })), (18)

whereN𝑖 denotes the neighborhood set of node 𝑣𝑖 and PROP𝑙 ,TRAN𝑙
stand for neighborhood propagation and feature transformation

at layer 𝑙 . In neighborhood propagation, neighborhood representa-

tions are propagated and further fused with itself to get the inter-

mediate representation ĥ𝑙
𝑖
. Then, the TRAN

𝑙
function is applied on

ĥ𝑙
𝑖
to get the final representation h𝑙

𝑖
of node 𝑣𝑖 at layer 𝑙 . Note that

h0
𝑖
of node 𝑣𝑖 is typically initialized as the original node feature X𝑖 .

After stacking 𝐿 graph convolutional layers, every node aggregates

their neighborhood information up to 𝐿-hops away and we denote

it as H𝐿 ∈ R𝑛×𝑑𝐿 . Many graph convolutions can be obtained under

this template by configuring different PROP
𝑙
and TRAN

𝑙
. In this

work, the encoder of FairVGNN is designed following this template.

We use GCN, GIN and GraphSAGE as our GNN-backbones re-

spectively for each bias-alleviating method. The basic graph convo-

lution layer of these three backbones, respectively, are:

H𝑙 = D̃−0.5 (A + I)D̃−0.5H𝑙−1W𝑙 , (19)

H𝑙 = MLP
𝑙 ((A + (1 + 𝛼)I)H𝑙−1), (20)

H𝑙 = W𝑙,1H𝑙−1 +W𝑙,2D−1AH𝑙−1, (21)

where D̃ is the degree matrix with added self-loop, H𝑙−1 is the node
representation obtained from the previous layer and H0 = X. In
this work, we only consider one graph convolution, therefore 𝑙 = 1.

B.2 Hyperparameter for Each Baseline
As different bias-alleviating methods have different model architec-

tures, their hyperparameters are also different and are presented

respectively in the following:

• NIFTY: dropout {0.0, 0.5, 0.8}, the number of hidden unit 16,

learning rate {1𝑒−2, 1𝑒−3, 1𝑒−4}, project hidden unit 16, weight

decay {1𝑒−4, 1𝑒−5}, drop edge rate 0.001, drop feature rate 0.1,

regularization coefficient {0.4, 0.5, 0.6, 0.7, 0.8}.
• EDITS: initial learning rate 0.003, weight decay 1𝑒−7, threshold
proportions for Credit, German, and Recidivism dataset are 0.02,

0.25, 0.012 respectively.

• FairGNN: dropout {0.0, 0.5, 0.8}, the number of hidden unit 32,

learning rate {0.0001, 0.001, 0.01}, weight decay 1𝑒−5, regular-
ization coefficients 𝛼 = 4, 𝛽 = 0.01, sensitive number 200, label

number 500.

C DATASET DETAILS
Here we present the detailed description of three datasets we used

to validate our proposed FairVGNN as follows:

• German Credit (German): nodes are clients in a German bank,

node attributes include gender, loan amount, and other account-

related details, with edges formed between clients if their credit

accounts are similar. The task is to classify the credit risk of the

clients as high or low with ‘gender’ being the sensitive feature.

• Recidivism (Bail): nodes are defendants released on bail during

1990-2009, and edges are formed between defendants if they

share similar past criminal records and demographics. The task is

to predict whether a defendant would be more likely to commit

a violent or nonviolent crime once released on bail with ‘race’

being the sensitive feature.

• Credit Defaulter (Credit): nodes are credit card users, and edges
are formed between users if their share similar pattern in pur-

chases/payments. The task is to predict whether a user will de-

fault on credit card payment with ‘age’ being the sensitive feature.
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Figure 5: Correlation variation after feature propagation on
the German and Credit datasets with the parentheses next
to each dataset denoting the network homophily.

D DETAILED EXPERIMENTAL RESULTS
D.1 Effect of Weight Clamping
Table 6 reports the full results of comparing our proposed adaptive

weight clamping with two other weight regularization approaches:

weight clamping and spectral normalization.We can clearly see that

generally our proposed adaptive weight clamping achieves better

trade-off between utility and fairness. This is because adaptive

weight clamping clamps weights more on sensitive-related features

and hence minimally remove critical information beneficial for

classification. However, in some cases such as on Credit dataset, the

GCN with adaptive weight clamping has higher bias than directly

weight clamping. This is because blindly clamping weights with no

selection would remove more information, some of which might

overlap with sensitive information and hence cause less bias, while

some of which might overlap with class-related information and

hence cause lower model utility (the accuracy is 77.79 lower than

78.04 when using adaptive weight clamping).

D.2 Detailed Correlation Variation of German
and Credit Datasets

Here we visualize the correlation variation of the first 13 feature

channels on German and Credit after different layers of feature

propagation. We clearly see that compared with German where

some feature channels quickly become highly correlated to sen-

sitive channel while some become less correlated. The sensitive

correlation of feature channels on Credit changes more slowly.

Therefore, masking according to the rank of original sensitive cor-

relation 𝝆origin is roughly the same as the propagated sensitive

correlation 𝝆prop and the performance of S1 and S2 are the same in

Table 1 on Credit compared with German. We argue that the slow

variance of feature correlation is because the higher homophily of

Credit (0.9595) than German (0.8048) triggers less change of feature

correlation during feature propagation. In the extreme case where

node features strictly obey the network homophily, feature prop-

agation would cause no change on feature distributions of every

node and therefore the feature correlation would stay the same.
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