
Federated Graph Machine Learning: A Survey of
Concepts, Techniques, and Applications

Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, Jundong Li
University of Virginia

{xf3av, epb6gw, yd6eb, zrh6du, jundong}@virginia.edu

ABSTRACT
Graph machine learning has gained great attention in both
academia and industry recently. Most of the graph machine
learning models, such as Graph Neural Networks (GNNs),
are trained over massive graph data. However, in many real-
world scenarios, such as hospitalization prediction in health-
care systems, the graph data is usually stored at multiple
data owners and cannot be directly accessed by any other
parties due to privacy concerns and regulation restrictions.
Federated Graph Machine Learning (FGML) is a promising
solution to tackle this challenge by training graph machine
learning models in a federated manner. In this survey, we
conduct a comprehensive review of the literature in FGML.
Specifically, we first provide a new taxonomy to divide the
existing problems in FGML into two settings, namely, FL
with structured data and structured FL. Then, we review
the mainstream techniques in each setting and elaborate
on how they address the challenges under FGML. In ad-
dition, we summarize the real-world applications of FGML
from different domains and introduce open graph datasets
and platforms adopted in FGML. Finally, we present several
limitations in the existing studies with promising research
directions in this field.

1. INTRODUCTION
In recent years, graphs have been widely used to represent
complex data in a wide diversity of real-world domains, e.g.,
healthcare [112; 84], transportation [56; 136], bioinformat-
ics [72; 137], and recommendation systems [13; 29]. Numer-
ous graph machine learning techniques provide insights into
understanding rich information hidden in graphs and show
expressive performance in different tasks, such as node clas-
sification [139; 38] and link prediction [6; 21].

Although these graph machine learning techniques have made
significant progress, most of them require a massive amount
of graph data centrally stored on a single machine. How-
ever, with the emphasis on data security and user privacy
[107], this requirement is often infeasible in the real world.
Instead, graph data is usually distributed in multiple data
owners (i.e., data isolation) and we are not able to collect
the graph data in different places due to privacy concerns.
For instance, a third-party company aims to train a graph
machine learning model for a group of financial institutions
to help them detect potential financial crimes and fraud cus-

tomers. Each financial institution owns its local dataset of
customers, such as their demographics, as well as transac-
tion records among them. The customers in each financial
institution form a customer graph where edges represent the
transaction records. Due to strict privacy policies and com-
mercial competition, local customer data in each institution
cannot be directly shared with the company or other institu-
tions. Meanwhile, some institutions may have connections
with others, which could be viewed as structural information
among institutions. Generally, the major challenge for the
company lies in training a graph machine learning model for
financial crime detection based on the local customer graphs
and structural information among institutions without di-
rectly accessing local customer data in each institution.

Federated Learning (FL) [76] is a distributed learning scheme
which addresses the data isolation problem through collab-
orative training. It enables participants (i.e., clients) to
jointly train a machine learning model without sharing their
private data. Therefore, combining FL with graph machine
learning becomes a promising solution to the aforementioned
problem. In this paper, we term it Federated Graph Ma-
chine Learning (FGML). In general, FGML can be catego-
rized as two settings with respect to the level of structural
information. The first setting is FL with structured data.
In FL with structured data, clients collaboratively train a
graph machine learning model based on their graph data
while keeping the graph data locally. The second setting is
structured FL. In structured FL, there are structural infor-
mation among the clients which forms a client-level graph.
The client graph could be leveraged to design more effective
federated optimization approaches.

While FGML provides a promising paradigm, the following
challenges emerge and need to be addressed.

1. Cross-client missing information. A common scenario
in FL with structured data is that each client owns a
subgraph of the global graph and some nodes may have
neighbors belonging to other clients. Due to privacy
concerns, a node can only aggregate the features of
its neighbors within the client but cannot access the
features of those located on other clients, which leads
to insufficient node representations [135; 88; 129; 11].

2. Privacy leakage of graph structures. In traditional FL,
a client is not allowed to expose the features and la-
bels of its data samples. In Fl with structured data,
the privacy of structural information should also be
considered. The structural information can be either
directly exposed by sharing the adjacency matrix or

1

ar
X

iv
:2

20
7.

11
81

2v
1

 [
cs

.L
G

]
 2

4
Ju

l 2
02

2

indirectly exposed by transmitting node embeddings
[134; 66; 114; 92].

3. Data heterogeneity across clients. Unlike traditional
FL where data heterogeneity comes from non-IID data
samples [97; 46], graph data in FGML contains rich
structural information [138; 50; 65; 51]. Meanwhile,
divergent graph structures across clients can also affect
performance of graph machine learning models.

4. Parameter utilization strategies. In structured FL, the
client graph enables a client to obtain information from
its neighbor clients. The effective strategies of fully
utilizing neighbor information orchestrated by a cen-
tral server or in a fully decentralized manner should
be well designed in structured FL [55; 40; 78].

To tackle the above challenges, a great number of algorithms
have been proposed in recent years. However, to the best
of our knowledge, the existing surveys mainly focus on chal-
lenges and approaches in standard FL [58; 53; 123; 143; 100]
yet only a few attempts have been made to survey specific
problems and techniques in FGML [133; 63]. A position pa-
per [133] provides a categorization of FGML but does not
summarize main techniques in FGML. Another review pa-
per [63] only covers a limited number of related papers in
this topic and introduces the existing techniques very briefly.

In this survey, we introduce the concepts of two problem
settings in FGML. Then we review the current techniques
under each setting and introduce real-world applications in
FGML. We also summarize accessible graph datasets and
platforms which can be used for applications of FGML. Fi-
nally, several promising future directions are presented. Our
contributions in this paper can be summarized as follows.

• Taxonomy of Techniques in FGML. We propose
a taxonomy of FGML based on different problem set-
tings and summarize key challenges in each setting.

• Comprehensive Technique Review. We provide
a comprehensive overview of the existing techniques
in FGML. Compared with the existing reviews, we
not only investigate a more extensive set of related
work but also provide a more elaborate analysis of
techniques instead of simply listing the steps of each
method.

• Real-World Applications. We are the first to sum-
marize real-world applications of FGML. We catego-
rize the applications by their domains and introduce
related works in each domain.

• Datasets and Platforms. We introduce the exist-
ing datasets and platforms in FGML, which facilitates
developing algorithms and deploying applications in
FGML for engineers and researchers.

• Promising Future Directions. We point out the
limitations of the existing methods and provide promis-
ing future directions in FGML.

The rest of this paper is organized as follows. Section 2
briefly introduces definitions in graph machine learning as
well as concepts and challenges of two settings in FGML. We
review mainstream techniques in the two settings in Section

3 and Section 4, respectively. Section 5 further explores ap-
plications of FGML in the real world. Section 6 presents
open graph datasets used in related FGML papers and two
platforms for FGML. We also provide possible future direc-
tions in Section 7. Finally, Section 8 concludes this paper.

2. PROBLEM FORMULATION
In this section, we first present related definitions in graph
machine learning and FL. Then we introduce the problem
formulation of two different settings in FGML.

Notations. Throughout this paper, we use bold lowercase
letters (e.g., z) and bold uppercase letters (e.g., A) to rep-
resent vectors and matrices, respectively. For any matrix,
e.g., A, we use Ai to denote its i-th row vector and Aij to
denote its (i, j)-th entry. The lp norm of a vector z for p ≥ 1
is denoted as ||z||p. We use letters in calligraphy font (e.g.,
V) to denote sets. |V| denotes the cardinality of set V.

2.1 Graph Machine Learning
Definition 1. (Graphs) A graph is G = (V, E), where V
is the node set and E is the edge set. vi ∈ V denotes a node
and eij = (vi, vj) ∈ E denotes an edge between node vi and
node vj.

We use A ∈ {0, 1}n×n to represent the adjacency matrix of
graph G, where n = |V| is the total number of nodes. Aij =
1 implies that there exists an edge between node vi and
node vj , otherwise Aij = 0. D ∈ Rn×n denotes the degree
diagonal matrix where Dii =

∑
j Aij . The neighborhood

of node vi is defined as N(vi) = {vj ∈ V|(vi, vj) ∈ E}.
For graph data with node features, we use X ∈ Rn×d to
denote the node feature matrix where d is the number of
node features.

Graphs can be categorized as homogeneous graphs (contain-
ing only one type of nodes and one type of edges) and het-
erogeneous graphs (whose nodes belong to more than one
type of nodes and/or edges) according to the number of node
types and edge types. The two typical heterogeneous graphs
we mention in this paper are knowledge graphs (KGs) and
user-item graphs.

Definition 2. (Knowledge Graphs) A knowledge graph
is a directed heterogeneous graph G = (V, E) where nodes
are entities and edges are subject-property-object triple facts.
Each edge of the form (head entity, relation, tail entity) (de-
noted as (h, r, t)) indicates a relationship r from a head en-
tity h to a tail entity t.

Definition 3. (User-Item Graphs) A user-item graph is
a heterogeneous graph G = (V, E). Users and items serve as
nodes and relations between users and items serve as edges.
In some scenarios, relations also exist between users and be-
tween items.

Definition 4. (Graph Machine Learning Models)
Given a graph G = (V, E), a graph machine learning model
fω parameterized by ω learns the node representations H ∈
Rn×de with respect to G for downstream tasks, where de is
the dimension of node embeddings

H = fω(G). (1)

For node classification tasks, we usually employ a softmax

2

(a) FL with structured data (b) Original FL (c) Structured FL

Figure 1: The framework comparison among original FL, FL with structured data and structured FL. (a) FL with structured
data: each client owns graph data, i.e., a (sub)graph or multiple graphs. (b) Original FL: data samples on clients are typically
Euclidean data and no links exist among edges. (c) Structured FL: clients are connected by links and form a client graph.

function to obtain the probability vector for each node based
on its embedding, and then a loss function (e.g., cross en-
tropy) is applied to measure the difference between predic-
tions and the given node labels.

For graph classification tasks, a graph-level representation
hG can be pooled from node representations

hG = readout(H), (2)

where readout(·) is a pooling function (e.g., mean pooling
and sum pooling) which aggregates the embeddings of all
nodes in the graph into a single embedding vector.

Without loss of generality, we mainly consider Graph Neural
Networks (GNNs) (e.g., GCN [54], GAT [105], and Graph-
Sage [37]) as graph machine learning models in this survey.
In GNNs, each node vi typically gathers the information
from its neighbors N(vi) and aggregates them with its own
information to update its representation hi. Mathemati-
cally, an L-layer GNN fω can be formulated as

hli = σ(ωl · (hl−1
i ,Agg({hl−1

j |vj ∈ N(vi)}))) (3)

for l = 1, 2, · · · , L, where hli is the representation of node vi
after the l-layer of fω and h0

i = Xi is the raw feature of node
vi. ωl is the learnable parameters in the l-layer of fω and
Agg(·) is the aggregation operation (e.g., mean pooling). σ
is an activation function.

2.2 Federated Learning
FGML is a type of FL which involves structural information.
Before introducing the concepts of two settings in FGML,
we provide the definition of FL in this subsection.

Definition 5. (Federated Learning) In standard FL, we
consider a set ofM clients C = {ck}Mk=1. Each client ck owns

its private dataset Dk = {(xi, yi)Nk
i=1} sampled from its own

data distribution, where xi is the feature vector of i-th data
sample and yi is the corresponding label of the data sample.
Nk = |Dk| is the number of data samples on client ck and

N =
∑M
k=1 Nk. Let lk denote the loss function parameterized

by ω on client ck. The goal of FL is to optimize the overall
objective function while keeping private datasets locally

min
ω

M∑
k=1

Nk
N
Lk(ω) = min

ω

1

N

M∑
k=1

Nk∑
i=1

lk(xi, yi;ω), (4)

where Lk is the average loss over the local data on client ck.

FedAvg [76] is a typical algorithm for federated optimiza-
tion to obtain high model utility while preserving privacy.
In FedAvg, only model parameters are transmitted between
the central server and each client. Specifically, during each
round t, the central server selects a subset of clients and
sends them a copy of the current global model parameters
ωt for local training. Each selected client ck updates the re-
ceived copy ωtk by an optimizer such as stochastic gradient
descent (SGD) for a variable number of iterations locally
on its own dataset Dk. Then the server collects updated
model parameters ωtk from the selected clients and aggre-
gates them to obtain a new global model ωt+1. Finally, the
server broadcasts the updated global model ωt+1 to clients
for training in round t+ 1.

It is worthwhile to note that GNN and FL both involve an
aggregation operation. Aggregation in the context of GNN
represents the operation that a node updates its representa-
tion by aggregating information from its neighbors. Aggre-
gation in the context of FL represents the operation that the
central server collects model parameters from clients and up-
dates the global model parameters. Following the previous
survey [63], we use GNN aggregation and FL aggregation in
this survey to represent two aggregation operations in GNN
and FL, respectively.

2.3 Federated Graph Machine Learning
Standard FL mainly deals with tasks on Euclidean data
(e.g., image classification) and equally aggregates model pa-
rameters from clients. Different from standard FL, feder-
ated graph machine learning involves structural information
in federated optimization. Based on the level of structural
information, FGML can be categorized as two mainstreams.

Setting 1. (FL with Structured Data) In FL with
structured data, clients possess private structured datasets
(i.e., graphs) and jointly train a graph machine learning
model orchestrated by the central server. Fig. 1(a) illus-
trates the framework of FL with structured data. Formally,
each client ck owns its private local data Dk = {G1,G2, · · · },
where each Gi = (Vi, Ei) is a graph with its node set Vi and
edge set Ei. The objective of FL with structured data is that
each client collaboratively trains a graph machine learning
model fω with other clients based on its local graph dataset

3

Dk while always keeping Dk locally. Note that each client
in FL with structured data may have one single (sub)graph
or multiple graphs. In general, clients train a graph ma-
chine learning model for graph-level tasks when each client
ck owns multiple graphs and Nk is the number of graphs
on client ck; on the contrary, when each client ck owns one
single graph Gk or a subgraph Gk of an entire graph, the
graph machine learning model is for node-level tasks and
Nk = |Vk| is the number of nodes in Gk.

Setting 2. (Structured FL) In structured FL, relations
exist among clients. When we take each client as a node, all
the clients in structured FL will form a graph GC = {VC, EC}
where VC is the client set and EC contains links between
clients. Fig. 1(c) shows the framework of structured FL.
Formally, given the client graph GC = {VC , EC}, each client
ck collaboratively trains a machine learning model fω by
interacting with its neighbors N(ck) = {cs|(ck, cs) ∈ EC}. It
is noteworthy that the datasets on clients do not have to be
structured data.

In Section 3 and Section 4, we review the existing techniques
in FL with structured data and structured FL and analyze
how they solve the aforementioned challenges, respectively.
We summarize these techniques in Table 1.

3. FL WITH STRUCTURED DATA
The goal of clients in FL with structured data is to jointly
train a graph machine learning model based on their local
graph datasets while preserving privacy. In this section, we
review techniques in FL with structured data for improving
model utility and tackling the aforementioned challenges.
Fig. 2 illustrates the taxonomy of techniques in FL with
structured data.

3.1 Cross-Client Information Reconstruction
When a graph is split into multiple subgraphs and each client
owns a subgraph of the original graph, each node can only
perform GNN aggregation on the information from a subset
of its neighbors (i.e., those within the subgraph) but cannot
obtain information from those located on other clients due
to the privacy issue. The missing cross-client information
leads to biased node embeddings on each client and there-
fore degrades the performance of graph machine learning
models. The objective in this case is to reconstruct the im-
portant missing cross-client information for calculating node
embeddings. The existing techniques can be categorized as
intermediate result transmission and missing neighbor gen-
eration. The difference lies in whether the original global
graph structure is known: the studies in intermediate re-
sult transmission assume that the central server is aware of
the original graph structure, while those in missing neighbor
generation do not.

3.1.1 Intermediate Result Transmission
When the central server is aware of the original graph struc-
ture (including missing cross-client links), it is able to collect
intermediate results (e.g., node representations) in graph
machine learning models from clients and compute node em-
beddings according to their complete neighbor lists including
cross-client neighbors.

Considering an L-layer GCN model fω, the operation in the
l-th layer of fω can be written as

Hl = σ
(
LHl−1Wl

)
, (5)

(a) FL with structured data

(c) Overlapping instance alignment

(b) Cross-client information reconstruction

(d) Non-IID data adaptation

Figure 2: The taxonomy of techniques in FL with structured
data. The techniques in (a) FL with structured data can
be categorized as (b) cross-client information reconstruction
which recovers missing links (e.g., dashed lines in (b)) be-
tween nodes from different clients, (c) overlapping instance
alignment which aligns overlapping instances (e.g., nodes
connected by dashed lines in (c)) among different clients,
and (d) Non-IID data adaptation which tackles the non-IID
characteristic of data across clients.

where Hl is the hidden representation after the l-th layer of
fω and H0 = X. Wl denotes the weight matrix of the l-th

layer and L = (D+ I)−
1
2 (A+ I)(D+ I)−

1
2 . In the federated

setting, we rewrite the vanilla GCN model in a distributed
manner, where the hidden matrix Hl

(k) after the l-th layer
of fω on each client ck can be computed by

Hl
(k) = σ

(
M∑
s=1

L(ks)H
l−1
(s) Wl

(s)

)

= σ

L(kk)H
l−1
(k) Wl

(k) +
∑
s 6=k

L(ks)H
l−1
(s) Wl

(s)

 (6)

for l = 1, 2, · · · , L, where H0
(k) = X(k) are node features

on client ck. Wl
(k) denotes the local parameters in the l-th

layer of the local graph machine learning model on client ck.
L(ks) is a block of L corresponding to the rows of nodes in
Vk and columns of nodes in Vs.
An intuitive way of obtaining information from a node’s
neighbors located on other clients is to transmit node em-
beddings directly. To avoid exposing raw node features, each
client performs GNN aggregation within its local subgraph
when processing the first GCN layer [11; 64]

H1
(k) = σ(L(kk)X(k)W

1
(k)). (7)

Then, each client performs GNN aggregation for a node in-
cluding the embeddings of its neighbors from other clients
following Eq. (6) after the first GCN layer.

However, the block of degree diagonal matrix D(k) ∈ RNk×Nk

containing node degree information on client ck is unknown
for other clients due to privacy concerns and must be kept

4

Table 1: Summary of techniques in FGML.
Settings Techniques Approaches Data on each client Downstream Tasks

F
L

w
it

h
S
tr

u
ct

u
re

d
D

a
ta

Cross-Client Info. Recon. FedGraph [11] A subgraph Node classification
Cross-Client Info. Recon. Glint [64] A subgraph Node classification
Cross-Client Info. Recon. PPSGCN [129] A subgraph Node classification
Cross-Client Info. Recon. FedSage+ [135] A subgraph Node classification
Cross-Client Info. Recon. FedNI [88] A subgraph Node classification
Overlapping Ins. Align. FedVGCN [81] A graph Node classification
Overlapping Ins. Align. VFGNN [142] A graph Node classification
Overlapping Ins. Align. FedSGC [17] A graph Node classification
Overlapping Ins. Align. SGNN [77] A graph Node classification
Overlapping Ins. Align. FedGL [10] A subgraph Node classification
Overlapping Ins. Align. FedE[15] A KG KG completion
Overlapping Ins. Align. FedR [134] A KG KG completion
Overlapping Ins. Align. FKGE [87] A KG KG completion
Overlapping Ins. Align. FedGNN [113] A user-item graph Rating prediction
Overlapping Ins. Align. FedPerGNN [114] A user-item graph Rating prediction
Overlapping Ins. Align. FeSoG [66] A user-item graph Rating prediction

Non-IID data adaptation FedAlign [61] A subgraph Node classification
Non-IID data adaptation FLIT+ [144] Multiple graphs Graph classification/regression
Non-IID data adaptation GraphFL [108] A subgraph Node classification
Non-IID data adaptation FML-ST [59] A graph Node regression
Non-IID data adaptation FedGCN [43] Multiple graphs Graph classification
Non-IID data adaptation ASFGNN [140] A subgraph Node classification
Non-IID data adaptation GCFL+ [117] Multiple graphs Graph classification
Non-IID data adaptation CTFL [132] A subgraph Node regression

S
tr

u
ct

u
re

d
F

L

Centralized Aggregation SFL [12] A node Time series prediction
Centralized Aggregation BiG-Fed [120] A node Time series prediction
Centralized Aggregation CNFGNN [78] A node Time series prediction

Fully Decentralized Trans. D-FedGNN [86] A node Graph classification/regression
Fully Decentralized Trans. [55] A node Node regression
Fully Decentralized Trans. GFL [91] A node Node regression
Fully Decentralized Trans. FL DSGD/DSGT [69] A node Health record representation
Fully Decentralized Trans. FD DSGD/DSGT [70] A node Health record representation
Fully Decentralized Trans. [119] A node Image classification
Fully Decentralized Trans. SpreadGNN [40] A node Graph classification/regression
Fully Decentralized Trans. cPDS [5] A node Node classification
Fully Decentralized Trans. dFedU [24] A node Image classification
Fully Decentralized Trans. EF-HC [127] A node Image classification

locally during computation. There have been a series of
corresponding solutions to this problem. For instance, PPS-
GCN [129] reformulates each block L(ks) by

L(ks) = (D(k) + I)−
1
2 · L̃(ks), (8)

where L̃(ks) = A(ks)(D(k) + I)−
1
2 . Therefore, Eq. (6) can be

rewritten as

Hl
(k) = σ(L(kk)H

l−1
(k) Wl

(k)

+ (D(k) + I)−
1
2

∑
s 6=k

L̃(ks)H
l−1
(s) Wl

(s))
(9)

for l = 1, 2, · · · , L, where L̃(ks)H
l−1
(s) Wl

(s) can be calculated

locally within client cs and transmitted to the server. Conse-
quently, we can learn node representations over clients with-
out exchanging local graph structure information.

Although the raw data (i.e., node features and structural
information) are preserved with intermediate result trans-
mission, it requires the structural information of the orig-
inal graph to compute node embeddings, which might be
impractical in the real world. Furthermore, intermediate re-

sults are transmitted multiple times for each local update,
which also brings significant communication costs.

3.1.2 Missing Neighbor Generation
When the original graph structure is unknown to the server,
the techniques in intermediate result transmission fail since
the cross-subgraph links carrying important information will
never be captured by any client [135]. To tackle this issue,
several approaches of missing neighbor generation have been
proposed recently.

The intuition of missing neighbor generation is to design a
missing neighbor generator to reconstruct the features of a
node’s cross-subgraph neighbors on other clients [135; 88].
Concretely, each client ck first hides a subset of nodes and
related edges in its local subgraph Gk following a specific
strategy (e.g., Breadth-First Search) [88] to form an im-
paired subgraph Ḡk. Then each client trains X a predic-
tor parameterized by θd for predicting the number ñi of the
masked neighbors of each node vi in Ḡk and an encoder (e.g.,

GCN) parameterized by θf for predicting the features X̃(i)

5

of the masked neighbors by minimizing the loss

Ln = λdLd(ñi, ni; θd) + λfLf ({X̃(i)}vi∈Ḡk , {X(i)}vi∈Ḡk ; θf),
(10)

where Ld and Lf are the loss functions for the predicted
number of masked neighbors and their predicted features,
respectively. X(i) is the features of node vi’s masked neigh-
bors. A cross-subgraph feature reconstruction term [135]
is introduced to Lf , aiming to recover features of cross-
subgraph missing neighbors by decreasing the distance be-
tween predicted node features and the closest node feature
on other clients.

3.2 Overlapping Instance Alignment
In applications, an instance (e.g., a node in homogeneous
graphs or an entity in KGs) could belong to two or more
clients. Under this setting, the embeddings of an overlap-
ping instance from different clients may come from different
embedding spaces during collaborative training. To tackle
this problem, the overlapping instance alignment technique
is proposed [10; 142; 87]. The key idea is to learn global in-
stance embeddings based on the local instance embeddings
from clients. This technique can be applied to homogeneous
graphs, KGs, and user-item graphs.

3.2.1 Homogeneous Graph-Based Alignment
The existing works about instance alignment in homoge-
neous graphs are mainly under vertical FL [123]. In generic
vertical FL, clients have overlapping nodes but differ in the
feature space. Unlike generic vertical FL, structural infor-
mation in graph data is also taken into account in FGML.
One common scenario is that a set of nodes are located on
all clients but their features and relations are different across
clients [81; 142]. The central server can collect local node
embeddings from clients and align overlapping node embed-
dings. For instance, VFGNN [142] first computes local node
embeddings H(k) on each client ck using a graph machine
learning model. Then it combines the embeddings of each
node vi via a combination strategy

H← COMBINE({H(k)}Mk=1), (11)

where COMBINE(·) denotes a combination operator (e.g.,
Concat, Mean and Regression).

Another scenario is that one client only contains structural
information of graph data and other clients only contain
node features [17]. In this scenario, graph machine learn-
ing models cannot be simply applied on each client since
structural information and node features are located in dif-
ferent clients. The related techniques deal with this prob-
lem by protecting structural information and raw node fea-
tures simultaneously during federated optimization. For ex-
ample, SGNN [77] replaces the original adjacency matrix
with a structural similarity matrix As where entry As

ij mea-
sures the structural similarity between node vi and node vj .
SGNN computes As

ij by

As
ij = exp(−dist(OD(N(vi)),OD(N(vj)))), (12)

where OD(·) returns a list of ordered degree given the input
node list and dist(·, ·) is a distance function (e.g., dynamic
time warping (DTW) [83]). Then SGNN embeds original
features on the clients which only contain features using one-
hot encoding and finally computes node embeddings with
the structural similarity matrix. FedSGC [17] applies Ho-

momorphic Encryption (HE) [1] for secure transmission of
the adjacency matrix and node features.

3.2.2 KG-Based Alignment
Suppose in a federated KG each client owns one KG and
each KG may have overlapping entities which also exist on
other clients. The key technique to improve the performance
of KG embedding is to align the embeddings of overlapping
entities across KGs [15; 134; 87]. More specifically, after
each round t, the server collects each local embedding ma-
trix from each client to update the global embedding ma-
trix. Then the server distributes the global embeddings to
corresponding clients for subsequent local training. As the
first FL framework for KGs, FedE [15] enables the server to
record all the unique entities from clients with an overall en-
tity table. The server collects the entity embedding matrix
Et

(k) of each client ck and aligns them by

Et =

(
1�

M∑
k=1

vk

)
⊗

M∑
k=1

P(k)E
t
(k), (13)

where Et is the global entity embedding matrix, 1 denotes
an all-one vector, � denotes element-wise division for vec-
tors and ⊗ denotes element-wise multiplication with broad-
casting. P(k) denotes client ck’s permutation matrix that
maps client ck’s entity matrix to the server’s entity table.
vk denotes client ck’s existence vectors.

As the server maintains a complete table of entity embed-
dings, it can easily infer a relation embedding between two
entities h and t by calculating

r′ = arg max
r
f(h, r, t), (14)

where f(·) denotes a score function (e.g., TransE [4]) [134].
To tackle the privacy issue, FedR [134] was proposed based
on relation embedding alignment.

Instead of aligning embeddings on the server, FKGE [87] en-
ables entity alignment between clients. Inspired by PATE-
GAN [52], FKGE involves a privacy-preserving adversarial
translation (PPAT) network for adversarial learning. The
PPAT network employs a generator as well as a student dis-
criminator and multiple teacher discriminators. The genera-
tor first translates aligned entities’ embeddings from Gk into
synthesized embeddings and sents them to Gs. The student
and teacher discriminators distinguish between the synthe-
sized embeddings and ground truth embeddings in Gs for
each pair of KGs (Gk,Gs) which have aligned entities Ek∩Es
and relations Rk ∩ Rs. During the alignment, only syn-
thesized embeddings and gradients are transmitted among
clients and data privacy can be guaranteed [33].

3.2.3 User-Item Graph-Based Alignment
In a federated recommendation system, each user only has a
first-order local user-item subgraph with its own item rating
and its neighbors located on its device. A naive method is to
align the embeddings of overlapping users and items directly.
However, the server can easily infer a user’s user-item links
by recording the items with non-zero-gradient embeddings
from this user because an item embedding gets updated on
the user only when the item has the rating score from the
user [66].

To tackle the privacy leakage, pseudo interacted item sam-
pling and Local Differential Privacy (LDP) [30] techniques

6

are two common strategies [113; 114; 66]. Before sending
gradients to the central server, each user uk first samples
some items that it has not interacted with (i.e., pseudo in-
teracted items). Then it generates embedding gradients of
the sampled items (e.g., using a Gaussian distribution) and
combines them with the real embedding gradients. Finally,
the user applies an LDP module to modify gradients by clip-
ping and adding zero-mean Laplacian noise to gradients

g′k = clip(gk, δ) + Laplace(0, λ), (15)

where gk is the unified gradients of user uk including model
gradients and user/item embedding gradients, clip(gk, δ) de-
notes limiting gk with the threshold δ and λ is the strength
of Laplacian noise.

3.3 Non-IID Data Adaptation
The data distribution on each client may diverge a lot both
in node features and graph structures [117]. Such data het-
erogeneity may lead to severe model divergence in the fed-
erated setting and therefore degrade the performance of the
global model. The intuition of mitigating the problem is
either to train an effective global model or to train special-
ized models for each client. The existing techniques handling
this problem can be categorized as single global model-based
methods and personalized model-based methods.

3.3.1 Single Global Model-Based Methods
The goal of single global model-based methods is to train a
global graph machine learning model over graph data from
clients. The existing techniques tackle non-IID data across
clients by designing loss functions and reweighting FL ag-
gregations and interpolating local models.

Loss Function Designing. The intuition of loss function
designing is to replace the original loss function, which is just
for high model utility, with a new well-designed loss func-
tion that is also targeted at data heterogeneity. A common
strategy is to add regularization terms into the local loss
function. For instance, to deal with relational data (e.g.,
KGs) heterogeneity across clients, FedAlign [61] minimizes
the average Optimal Transportation (OT) distance [106] be-
tween the basis matrices in basis decomposition [95] among
clients. Mathematically, to train an L-layer graph machine
learning model, the regularization term on client ck can be
rewritten as

Lrk =
µ

M

M∑
k 6=s

L∑
l=1

OT(Vl
(k),V

l
(s))+λ(||∇Lk(ω)||2−1)2, (16)

where Vl
(k) is the basis of l-th layer of the local graph ma-

chine learning model on client ck and OT(·) computes OT
distance. The second term is a weight penalty to make the
objective function quasi-Lipschitz continuous. µ and λ are
hyperparameters to adjust the contributions of each term.

In addition to regularization, another strategy in loss func-
tion designing is instance reweighting. For instance, FILT+
[144] pulls the local model closer to the global by minimizing
the loss discrepancy between a local model and the global
model. Specifically, FILT+ reweights instances on client ck
by putting more weights on samples with less confidence in
the loss function

Luk =

Nk∑
i=1

(1− exp(−Φ(xi, ω, ωk)))γ lk(ŷi, yi;ωk), (17)

where Φ(·) is defined as

Φ(xi, ω, ωk) = φ(xi, ωk)+max(φ(xi, ωk)−φ(xi, ω), 0). (18)

Here γ is a hyperparameter and φ(xi, ω) indicates the uncer-
tainty of training sample xi under the model ω. Generally,
if the local model ωk on client ck is less confident about a
sample xi than the global model ω, this sample will obtain
a higher weight in the objective function.

Inspired by the model-agnostic meta-learning (MAML) [28],
some meta learning-based methods in FGML [108; 59] rewrite
the loss function on each client ck as

Luk =

Nk∑
i=1

lk(ω − α∇lk(ω)), (19)

where α is a hyperparameter. Although the meta learning-
based methods do not minimize the discrepancy between lo-
cal models and the global model, they find an initial global
model which can be easily adapted by clients after perform-
ing one or a few extra local updates.

FL Aggregation Reweighting. Apart from the loss func-
tion designing, reweighting local models during FL aggrega-
tion is also a solution to deal with Non-IID data. FedGCN
[43] tries to reweight local model parameters via an atten-
tion mechanism. Considering an L-layer model fω, FedGCN
assigns adaptive weights {βt,lk }

L
l=1 to the model parameter

ωk from each client ck in round t for FL aggregation

ωt+1,l =

M∑
k=1

βt,lk ω
t,l
k (20)

for l = 1, 2, · · · , L. βt,lk can be calculated through a softmax

operation of score function αt,lk

αt,lk = Attn(ωt,lk , ω
t,l) = plk[ωt,lk ;ωt,l], (21)

where Attn(·) is the attention mechanism, [·; ·] indicates a
concat operation, and plk is a trainable vector. As a re-

sult, {βt,lk }
L
l=1 can dynamically measure the closeness be-

tween each local model ωk and the global model ω.

Model Interpolation. The model interpolation technique
developed based on parameter weighted average of the global
and the local models. Specifically, the model ωtk on client
ck is a combination of its local model ωt−1

k and the global
model ωt [140]

ωtk = αkω
t−1
k + (1− αk)ωt, (22)

where αk is a mixing weight. The authors of [140] calcu-
late it as Jensen–Shannon divergence [60] between local and
global data distributions.

3.3.2 Personalized Model-Based Methods
Unlike training a single global graph machine learning model,
the goal of learning personalized models is to train person-
alized graph machine learning models for each client. The
resulting personalized models are tailored for specific clients
and thus result in good performance. Formally, the objec-
tive function for training personalized graph machine learn-
ing models can be rewritten as

min
ω1,ω2,··· ,ωM

M∑
k=1

Nk
N
Lk(ωk). (23)

7

(a) Structured FL

(c) Fully decentralized transmission(b) Centralized aggregation

Figure 3: The taxonomy of techniques in structured FL.
The techniques in (a) structured FL can be categorized as
(b) centralized aggregation and (c) fully decentralized trans-
mission. In (b) centralized aggregation, the server performs
the FL aggregation and computes global client embeddings
based on the client graph. In (c) fully decentralized trans-
mission, parameters are transmitted among clients based on
the client graph.

One common strategy for training personalized graph ma-
chine learning models is client clustering [94; 130; 31]. The
intuition of client clustering is that the clients with similar
data distribution can be clustered in a group and the clients
in a group share the same model parameters. The basic idea
of client clustering in FGML is to dynamically assign clients
to multiple clusters based on their latest gradients of graph
machine learning models [117; 132]. One problem in this
idea is that the clustering result is significantly influenced
by the latest gradients from clients, which are usually unsta-
ble during local training [117]. GCFL+ solves this problem
by taking series of gradient norms into account for client
clustering. Unlike collecting parameters in a cluster-wise
manner in GCFL, CTFL [132] updates the global model
based on representative clients of each cluster. A client’s
local model is updated as the average of the global model
and the representative model of the cluster which includes
the client.

4. STRUCTURED FL
In the real world, a client may have connections with oth-
ers, such as road paths existing among traffic sensors. These
connections usually contain rich information (e.g., the simi-
larity of data distribution) among clients. Considering these
connections, the clients can form a client graph. Structured
FL takes the client graph GC = {VC , EC} into account and
enables a client to obtain information from its neighbors.
The key techniques in structured FL can be categorized as
centralized aggregation and fully decentralized transmission.
Fig. 3 illustrates the taxonomy of techniques in structured
FL.

4.1 Centralized Aggregation
In structured FL with the central server, there exists struc-
tural information among clients. It is natural for the server
to consider the structural information while updating pa-
rameters for each client. Generally, the server first collects
parameters from clients as it does in standard FL. Then
it updates parameters for each client through a graph ma-
chine learning model based on the client graph GC and finally
sends the updated parameters back to clients.

Transmitting Model Parameters. Transmitting local
model parameters to the central server as the input of graph
machine learning models is a straightforward strategy. For
instance, the central server in SFL [12] collects local model
parameters {ωtk}Mk=1 from clients in round t and employs a
GCN [54] to compute a graph-based local model parameters
{φt+1

k }
M
k=1 by

{φt+1
k }

M
k=1 ← GCN(AC , {ωtk}Mk=1), (24)

where AC is the adjacency matrix of GC and GCN(·) repre-
sents the operations in GCN. The global model parameters
ωt+1 are calculated by a readout(·) operation

ωt+1 = readout({φt+1
k }

M
k=1). (25)

Each client ck updates local mode parameters in round t by
minimizing the local loss

min lk(ωk) + λ[R(ωtk, ω
t) +R(ωtk, φ

t
k)], (26)

where R(·) is a regularization term.

Similarly, the server in BiG-Fed [120] collects local model
parameters {ωtk}Mk=1 as client representatives and computes
a global client embedding H through a graph machine learn-
ing model based on {ωtk}Mk=1 and the client graph. Inspired
by contrastive learning [16], Big-Fed optimizes the model by

min
1

n

M∑
k=1

∑
cs∈N(ck)

1− cos(Hk,Hs)

+
1

n

M∑
k=1

Ecs∼Pk max(0, cos(Hk,Hs)),

(27)

where Hk is the global embedding of client ck and Pk is a
client sampling strategy. By minimizing the objective func-
tion in Eq. (27), each client will obtain a local model closer
to its neighbors.

Transmitting Embeddings. Instead of gathering model
parameters, another strategy for the server is to collect lo-
cal embeddings from each client and compute global embed-
dings through graph machine learning models. For instance,
CNFGNN [78] assumes that each client ck represents a sen-
sor with time series data xk. A client ck first computes a
temporal embedding hk by a local encoder (e.g., GRU [18])
which models local temporal dynamics. The central server
collects temporal embeddings {hk}Mk=1 from clients and em-
ploys a graph machine learning model to compute the spatial
embeddings {hGk}

M
k=1 of clients based on their temporal em-

beddings and client graph GC . As a result, hGk integrates
information from client ck’s neighbors and involves spatial
dynamics. hGk is finally sent back to each client ck as the
input of a local decoder with hk to make prediction.

4.2 Fully Decentralized Transmission
In the federated setting, one crucial bottleneck lies in high
communication cost on the central server [40]. A feasible

8

solution to tackle this issue is to train a model in a fully
decentralized fashion. Since the clients in structured FL
form a client graph GC = {VC , EC}, each client ck ∈ VC can
transmit parameters with its neighbors N(ck). Specifically,
when a client ck receives model parameters {ωts|cs ∈ N(ck)}
from its neighbors N(ck) [86; 55; 91], it can perform GNN
aggregation to update its local model parameters ωt+1

k by

ωt+1
k = AGG({ωts|cs ∈ N(ck)}), (28)

where AGG(·) is the aggregation function. An intuitive
method [86; 91] following this strategy is to let each client ck
directly sum up the model parameters from its neighboring
clients

ωt+1
k =

∑
cs∈N(ck)

ACks · ωts. (29)

However, this method results in losing local information of
each client since the updated model is fully determined by
neighboring information. This issue can be mitigated by
involving local information during aggregation [69; 119; 40;
5; 24; 127]. For example, the authors of [69; 70] directly add
local gradients during aggregation. Formally, the operation
can be written as

ωt+1
k =

∑
cs∈N(ck)

ACks · ωts − α∇Lk(ωtk). (30)

Some methods [119] choose to retain local model parameters.
Formally, these methods can be written as

ωt+1
k = ACkk · ωtk +

∑
cs∈N(ck)

ACks · ωts − α∇Lk(ωtk). (31)

5. APPLICATIONS
The number of applications of FGML is greatly increasing
in various domains such as transportation, computer vision,
recommendation systems, and healthcare. In this section,
we elaborate some representative applications of FGML.

5.1 Transportation
Traffic prediction plays an important role in urban comput-
ing since it benefits reducing traffic congestion and improv-
ing transportation efficiency in smart cities [141]. The target
of traffic prediction is to predict traffic speed or traffic flow
of regions or road segments based on historical data col-
lected by devices deployed in each region or road segment.
Traffic data containing spatial-temporal information can be
naturally represented as graphs and used as inputs of graph
machine learning models for traffic flow prediction. In the
cross-silo setting where a client typically represents an orga-
nization, each client constructs a local graph including de-
vices on the client as nodes and edges are formulated by their
physical properties (e.g., Euclidean distances). The clients
jointly train a graph machine learning model for traffic flow
prediction [67; 131; 132; 130]. In the cross-device setting
where a client represents a device, the clients can form a
graph based on their structure information and graph ma-
chine learning models are employed to calculate the embed-
dings of the clients. Due to the privacy issue, each client
uploads its temporal embeddings to the central server in-
stead of its raw data [78; 125].

Moreover, other applications of FGML in transportation
systems, such as location representation [36; 116], routing
planing [128; 124], and user mobility anomaly detection
[103], are also attracting increasing attention.

5.2 Computer Vision
The existing applications of FGML in computer vision con-
sist of image classification and object trajectory prediction
[7; 9; 49]. The intuition is to construct graphs which in-
corporate semantic relationships among classes and objects
on each client and embed them via graph machine learning
models. For image classification, a graph is constructed on
each client to represent classes (or domains) and the con-
nections among them; then the clients jointly train a graph
machine learning model to learn class embeddings [7; 9].
Typically, the existing techniques for image classification
mainly employ CNN-based methods as the backbone model.
Apart from the CNN-based backbone model (e.g., ResNet
[42] and DenseNet [45]), domain and class-specific features
and the GNN models are also transmitted for aggregation
during federated optimization. For object trajectory pre-
diction, the idea is to construct a series of dynamic graphs
from videos. Each graph represents objects and their spa-
tial relationships in a video frame. Besides aggregating in-
formation from nearby objects in the current graph, each
object also aggregates dynamic information from those in
the previous graph by a dynamic GNN. In a federated set-
ting (e.g., a distributed surveillance system), the dynamic
GNN is transmitted for collaborative training [49].

5.3 Recommendation Systems
The downstream task in graph-based federated recommen-
dation systems is to produce high-quality item rating for
each user. A graph machine learning model learns to predict
unobserved item rating to a user by leveraging the embed-
dings of users and items in a user’s local user-item subgraph
with its own item rating. Aside from transmitting model
parameters, user embeddings and item embeddings are also
collected by the server, which leads to information leakage
of item rating becoming a primary concern in federated rec-
ommendation systems [66; 113; 114]. This privacy issue is
mitigated via adding the embeddings of pseudo interacted
items and noise to gradients [113; 66].

5.4 Healthcare
Medical data such as medical images and disease symp-
toms are very sensitive and private, which results in medi-
cal datasets usually existing in isolated hospitals and medi-
cal institutes. The applications of FGML in healthcare are
targeted at disease and hospitalization prediction based on
medical images or health records stored in different hospi-
tals and institutes. One key feature of healthcare appli-
cations is complex connections among medical images or
health records because of patient interactions. The common
strategy of modeling the connections is to construct a graph
where each node represents an image or a medical record
from a patient [104]. Due to the privacy issue, the graph is
split into multiple subgraphs located in different hospitals
and institutes. Several papers deal with cross-hospital links
either by reconstructing cross-hospital connections [88] or
by transmitting parameters with nearby hospitals [69; 70;
5]. Fed-CBT [2] learns connectional brain template repre-
sentations by modeling them as graphs and fuses the graphs
of one subject with a deep graph normalizer (DGN) [35].
STFL [68] takes each channel in polysomnography record-
ings as a node in a graph and trains a graph machine learning
model for federated graph classification.

9

5.5 Other Applications
Apart from the aforementioned applications, FGML has man-
ifold applications in other domains. A number of related
papers have explored applications of FGML to various prob-
lems, such as human activity recognition [93], neural archi-
tecture search [109], packet routing [73], malware detection
[20; 85], multi-armed bandits [145], drug discovery [74], and
financial crime detection [99].

6. DATASETS AND PLATFORMS
In this section, we summarize the existing open graph datasets
and platforms used for FGML research.

6.1 Datasets
We organize and introduce examples of real-world datasets
in Table 2. These datasets are categorized by different ap-
plication domains, such as citation networks, coauthor net-
works, social networks, molecules, proteins, KGs, recom-
mendation systems, transportation, and healthcare. For
each dataset, we provide basic statistical information includ-
ing the number of graphs, the (average) number of nodes,
the (average) number of edges. We also list the correspond-
ing papers that use these datasets.

6.2 Platforms
Although a number of platforms [3; 8; 146] facilitate FL ap-
plications in multiple domains such as vision and language,
only a few of them provide off-the-shelf supports for graph
datasets and graph machine learning models. To the best
of our knowledge, FedGraphNN [39] and FederatedScope-
GNN (FS-G) [111] are the two platforms supporting tasks
in FGML among the existing FL platforms.

FedGraphNN. FedGraphNN is an FL benchmark system
for GNNs in FedML ecosystem [41]. It contains 36 graph
datasets from 7 domains, such as molecules, proteins, KGs,
recommendation systems, citation networks, and social net-
works. As for graph machine learning models, it supports
a series of popular GNN-based models, such as GCN [54],
GAT [105], GraphSage [37], and GIN [122], implemented via
PyTorch Geometric [27].

FederatedScope-GNN. FS-G is built upon an event-driven
FL framework FederatedScope [118] and it is compatible
with various graph machine learning backends. For the ease
of benchmarking approaches in FGML, FS-G incorporates
two components specifically designed for FGML: Graph-
DataZoo and GNNModelZoo. A GraphDataZoo integrates a
rich collection of splitting mechanisms for dispersing a given
standalone graph dataset into multiple clients. A GNNMod-
elZoo integrates a number of algorithms including vanilla
graph machine learning models (e.g., GCN [54], GAT [105],
and GraphSage [37]) and some recent frameworks in FGML,
such as FedSage+ [135], GCFL+ [117], and Fedgnn [113].
FS-G also supports federated hyper-parameter optimization
and model personalization for FGML.

7. OPEN CHALLENGES AND FUTURE DI-
RECTIONS

In this section, we present some limitations in current stud-
ies and provide promising directions for future advances.

Data Heterogeneity of Graph Structures. Unlike the
original FL where data distribution of features and labels are

considered, the non-IID characteristic of graph structures is
also a key challenge. Although a few papers analyze non-
IID graph structures across clients [117], few of them address
this issue completely. Despite some popular approaches de-
signed for mitigating the non-IID characteristic in standard
FL [31; 97; 46], the approaches in FGML should take graph
structures into account.

Secure Aggregation of Instance Embeddings. As men-
tioned in Section 3, the central server may collect instance
embeddings from clients for instance alignment in FGML,
especially in KGs and user-item graphs. The existing studies
mainly apply LDP techniques and pseudo instance sampling
to alleviate privacy leakage due to embedding transmission
[66; 113]. However, these algorithms can lead to perfor-
mance degradation because of introducing noise. Thus, de-
signing an effective yet secure aggregation scheme in FGML
is still an open problem.

Communication Reduction Strategies in FGML. Com-
munication is a critical bottleneck in the federated setting
[76]. Large communication overhead makes it difficult to
train an FL model. In FGML, we should consider both
client-level and node-level relationships between different
clients and it usually requires extra communication along
these relations [40; 129]. Therefore, communication might
be a more serious bottleneck in FGML. Further applied re-
search on FGML should better consider the communication
reduction strategies such as data compression [62] and local
updating [58].

Fairness in FGML. Fairness is an important topic in FL.
Without accessing the sensitive information (e.g., gender
and race) in different clients, FL models might show dis-
tinct bias against some groups of data [26]. Furthermore, we
want the model to have similar performance in each client
in some FL scenarios [19; 57]. They are both requirements
of fairness in FL. Considering structural information in FL,
FGML provides many non-trivial challenges of fairness, e.g.,
how the structural information affects different fairness met-
rics in the federated training process. Novel fairness-aware
FGML models are greatly expected.

Poisoning Attacks and Defenses in FGML. Recently, a
few studies about poisoning attacks and defenses have been
proposed [14; 121]. Apart from poisoning attacks on data
features and model parameters in standard FL, poisoning at-
tacks on graph structures can also affect collaborative train-
ing in FGML. Designing efficient attacks on graph struc-
tures in FGML and defending against such attacks could be
a promising topic in security.

Benchmarks and Platforms. Compared with abundant
benchmarks and platforms in standard FL [146; 3; 8; 118],
applicable benchmarks and platforms in FGML are still at
an infant stage. The current two platforms, FederatedScope-
GNN [111] and FedGraphNN [39], lack either graph datasets
or off-the-shelf FGML algorithms. In addition, splitting
mechanisms in FGML are significantly different from those
in standard FL, especially when a graph is split into mul-
tiple subgraphs across clients. Practical distributed graph
data from the real world is needed for more practical graph
partition.

8. CONCLUSIONS
A large number of powerful graph machine learning models
have achieved remarkable success in different domains. How-

10

Table 2: Summary of graph datasets.
Category Datasets # Graphs (Avg.) # Nodes (Avg.) # Edges Works Citation

CORA [75] 1 2,708 5,429 [135; 11; 64; 81; 142; 108]
Citation CITESEER [32] 1 4,230 5,358 [135; 11; 81; 142; 108]
Networks PUBMED [96] 1 19,717 44,338 [135; 11; 64; 129; 81; 142]

arXiv [44] 1 169,343 2,315,598 [142]

Coauthor
CS [98] 1 18,333 81,894 [108; 135]

Networks
Physics [98] 1 34,493 247,962 [64]
Aminer [102] 1 3,923 9,023 [77]

KarateClub [126] 1 34 156 [120]
REDDIT [37] 1 232,965 114,848,857 [11; 64; 129]

REDDIT-BINARY [80] 2,000 429.63 497.75 [43]
Social GITHUB [80] 12,725 113.79 234.64 [43]

Networks IMDB-BINARY [80] 1,000 19.77 96.53 [43; 117]
IMDB-MULTI [80] 1,500 13 65.94 [43; 117]

COLLAB [80] 5,000 74.49 2457.78 [43; 117]
Amazon2M [44] 1 2,449,029 61,859,140 [108; 129]

Molecules

FreeSolv [115] 642 8.72 25.6 [144; 86]
Lipophilicity [115] 4,200 27.04 86.04 [144; 86]

ESOL [115] 1,128 13.29 40.65 [144; 86]
MUV [115] 93,087 24.23 76.80 [40]
QM8 [115] 21,786 7.77 23.95 [40]

QM9 [115; 80] 133,885 8.8 27.6 [144]
Tox21 [115; 80] 7,831 18.51 25.94 [144; 86; 40]

SIDER [115] 1,427 33.64 35.36 [144; 86; 40]
ClinTox [115] 1,478 26.13 27.86 [144; 86]
BBBP [115] 2,039 24.05 25.94 [144; 86]
BACE [115] 1,513 34.12 36.89 [144; 86]
hERG [115] 10,572 29.39 94.09 [86]
NCI1 [80] 4,110 29.87 32.3 [43; 117]

MUTAG [80] 188 17.93 19.79 [117]
BZR [80] 405 35.75 38.36 [117]

COX2 [80] 467 41.22 43.45 [117]
DHFR [80] 467 42.43 44.54 [117]

PTC MR [80] 344 14.29 14.69 [117]
AIDS [80] 2,000 15.69 16.20 [117]

Proteins
DDI [80] 1,178 284.32 715.66 [43; 117]

PROTEINS [80] 1,113 39.06 72.82 [43; 117]
ENZYMES [80] 600 32.63 62.14 [43; 117]
FB15k-237 [22] 1 14,505 212,110 [15; 134]

Knowledge WN18RR [22] 1 40,559 71,839 [134]
Graphs NELL-995 [110] 1 63,917 147,465 [15]

DDB14 [110] 1 9,203 44,561 [134]
Flixster [48] 1 6,000 26,173 [113; 114]
Douban [71] 1 6,000 136,891 [113; 114]

Recommendation Yahoo [25] 1 6,000 5,335 [113; 114]
Systems MovieLens [79] 1 82,000 10,000,054 [113; 114]

Ciao [101] 1 26,678 167,320 [66]
Epinions [101] 1 35,079 225,579 [66]
Filmtrust [34] 1 3,579 35,500 [66]

Transportation

Brazil [90] 1 131 1,038 [77]
Europe [90] 1 399 5,995 [77]

PeMSD4 [82] 1 307 - [132; 12]
PeMSD7 [82] 1 288 - [132]
PeMSD8 [82] 1 288 - [12]

PEMS-BAY [82] 1 325 - [78; 12]
METR-LA [47] 1 207 - [78; 12]

Healthcare
ABIDE [23] 1 1,029 - [88]
ADNI [89] 1 911 - [88]

11

ever, graph machine learning in a federated setting still faces
a series of new challenges and therefore attracts massive at-
tention from both researchers and practitioners. In this pa-
per, we introduce the concepts of two problem settings in
FGML. Then we review the current techniques under each
setting in detail and introduce applications of FGML from
different domains in the real world. We also summarize open
graph datasets and platforms in FGML. In the end, some
promising future directions are provided.

9. ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation
under grant IIS-2006844 and CNS-2154962, the 3 Cavaliers
seed grant, and the 4-VA collaborative research grant.

10. REFERENCES

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti. A
survey on homomorphic encryption schemes: Theory
and implementation. ACM Computing Surveys, 2018.

[2] H. C. Bayram and I. Rekik. A federated multigraph
integration approach for connectional brain template
learning. In ML-CDS, 2021.

[3] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba,
A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ,
S. Mazzocchi, B. McMahan, et al. Towards federated
learning at scale: System design. In MLSys, 2019.

[4] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for mod-
eling multi-relational data. In NIPS, 2013.

[5] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C.
Paschalidis, and W. Shi. Federated learning of predic-
tive models from federated electronic health records.
International Journal of Medical Informatics, 2018.

[6] L. Cai, J. Li, J. Wang, and S. Ji. Line graph neural
networks for link prediction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[7] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone,
E. Rodola, and B. Caputo. Cluster-driven graph feder-
ated learning over multiple domains. In CVPR Work-
shops, 2021.

[8] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ,
H. B. McMahan, V. Smith, and A. Talwalkar. Leaf: A
benchmark for federated settings. In NeurIPS Work-
shops, 2019.

[9] A. Chakravarty, A. Kar, R. Sethuraman, and D. Sheet.
Federated learning for site aware chest radiograph
screening. In ISBI, 2021.

[10] C. Chen, W. Hu, Z. Xu, and Z. Zheng. Fedgl: fed-
erated graph learning framework with global self-
supervision. arXiv preprint arXiv:2105.03170, 2021.

[11] F. Chen, P. Li, T. Miyazaki, and C. Wu. Fedgraph:
Federated graph learning with intelligent sampling.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2021.

[12] F. Chen, G. Long, Z. Wu, T. Zhou, and J. Jiang.
Personalized federated learning with graph. arXiv
preprint arXiv:2203.00829, 2022.

[13] H. Chen, L. Wang, Y. Lin, C.-C. M. Yeh, F. Wang,
and H. Yang. Structured graph convolutional networks
with stochastic masks for recommender systems. In
SIGIR, 2021.

[14] J. Chen, G. Huang, H. Zheng, S. Yu, W. Jiang,
and C. Cui. Graph-fraudster: Adversarial attacks on
graph neural network-based vertical federated learn-
ing. IEEE Transactions on Computational Social Sys-
tems, 2022.

[15] M. Chen, W. Zhang, Z. Yuan, Y. Jia, and H. Chen.
Fede: Embedding knowledge graphs in federated set-
ting. In IJCKG, 2021.

[16] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton.
A simple framework for contrastive learning of visual
representations. In ICML, 2020.

[17] T.-H. Cheung, W. Dai, and S. Li. Fedsgc: Federated
simple graph convolution for node classification. In IJ-
CAI Workshops, 2021.

[18] K. Cho, B. van Merrienboer, C. Gucehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. In
EMNLP, 2014.

[19] S. Cui, W. Pan, J. Liang, C. Zhang, and F. Wang.
Addressing algorithmic disparity and performance in-
consistency in federated learning. In NeurIPS, 2021.

[20] K. H. T. Dam, C.-H. B. Van Ouytsel, and A. Legay.
Symbolic analysis meets federated learning to enhance
malware identifier. arXiv preprint arXiv:2204.14159,
2022.

[21] D. Daza, M. Cochez, and P. Groth. Inductive en-
tity representations from text via link prediction. In
WWW, 2021.

[22] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel.
Convolutional 2d knowledge graph embeddings. In
AAAI, 2018.

[23] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X.
Castellanos, K. Alaerts, J. S. Anderson, M. Assaf,
S. Y. Bookheimer, M. Dapretto, et al. The autism
brain imaging data exchange: Towards a large-scale
evaluation of the intrinsic brain architecture in autism.
Molecular psychiatry, 2014.

[24] C. T. Dinh, T. T. Vu, N. H. Tran, M. N. Dao, and
H. Zhang. A new look and convergence rate of feder-
ated multi-task learning with laplacian regularization.
arXiv preprint arXiv:2102.07148, 2021.

[25] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The yahoo! music dataset and kdd-cup’11. In KDD
Cup 2011, 2012.

[26] Y. H. Ezzeldin, S. Yan, C. He, E. Ferrara, and S. Aves-
timehr. Fairfed: Enabling group fairness in federated
learning. In NeurIPS Workshops, 2021.

12

[27] M. Fey and J. E. Lenssen. Fast graph representation
learning with pytorch geometric. In ICLR Workshops,
2019.

[28] C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks.
In ICML, 2017.

[29] C. Gao, X. Wang, X. He, and Y. Li. Graph neural
networks for recommender system. In WSDM, 2022.

[30] R. C. Geyer, T. Klein, and M. Nabi. Differentially
private federated learning: A client level perspective.
In NIPS Workshops, 2017.

[31] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran. An
efficient framework for clustered federated learning. In
NeurIPS, 2020.

[32] C. L. Giles, K. D. Bollacker, and S. Lawrence. Cite-
seer: An automatic citation indexing system. In DL,
1998.

[33] Z. Guan, Y. Li, Z. Xue, Y. Liu, H. Gao, and Y. Shao.
Federated graph neural network for cross-graph node
classification. In CCIS, 2021.

[34] G. Guo, J. Zhang, and N. Yorke-Smith. A novel
bayesian similarity measure for recommender systems.
In IJCAI, 2013.

[35] M. B. Gurbuz and I. Rekik. Deep graph normalizer: A
geometric deep learning approach for estimating con-
nectional brain templates. In MICCAI, 2020.

[36] S. Gurukar, S. Parthasarathy, R. Ramnath, C. Calder,
and S. Moosavi. Locationtrails: A federated approach
to learning location embeddings. In ASONAM, 2021.

[37] W. Hamilton, Z. Ying, and J. Leskovec. Inductive rep-
resentation learning on large graphs. In NIPS, 2017.

[38] M. Hang, J. Neville, and B. Ribeiro. A collective learn-
ing framework to boost gnn expressiveness for node
classification. In ICML, 2021.

[39] C. He, K. Balasubramanian, E. Ceyani, C. Yang,
H. Xie, L. Sun, L. He, L. Yang, P. S. Yu, Y. Rong,
et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. In ICLR Work-
shops, 2021.

[40] C. He, E. Ceyani, K. Balasubramanian, M. An-
navaram, and S. Avestimehr. Spreadgnn: Serverless
multi-task federated learning for graph neural net-
works. In AAAI, 2022.

[41] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang,
X. Wang, P. Vepakomma, A. Singh, H. Qiu, et al.
Fedml: A research library and benchmark for feder-
ated machine learning. In NeurIPS, 2020.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[43] K. Hu, J. Wu, Y. Li, M. Lu, L. Weng, and M. Xia.
Fedgcn: Federated learning-based graph convolutional
networks for non-euclidean spatial data. Mathematics,
2022.

[44] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu,
M. Catasta, and J. Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. In NeurIPS,
2020.

[45] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.
Weinberger. Densely connected convolutional net-
works. In CVPR, 2017.

[46] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei,
and Y. Zhang. Personalized cross-silo federated learn-
ing on non-iid data. In AAAI, 2021.

[47] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakon-
stantinou, J. M. Patel, R. Ramakrishnan, and C. Sha-
habi. Big data and its technical challenges. Communi-
cations of the ACM, 2014.

[48] M. Jamali and M. Ester. A matrix factorization tech-
nique with trust propagation for recommendation in
social networks. In RecSys, 2010.

[49] M. Jiang, T. Jung, R. Karl, and T. Zhao. Federated
dynamic graph neural networks with secure aggre-
gation for video-based distributed surveillance. ACM
Transactions on Intelligent Systems and Technology,
2022.

[50] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang.
Graph structure learning for robust graph neural net-
works. In KDD, 2020.

[51] D. Johnson, H. Larochelle, and D. Tarlow. Learning
graph structure with a finite-state automaton layer.
In NeurIPS, 2020.

[52] J. Jordon, J. Yoon, and M. Van Der Schaar. Pate-
gan: Generating synthetic data with differential pri-
vacy guarantees. In ICLR, 2018.

[53] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet,
M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and
open problems in federated learning. Foundations and
Trends® in Machine Learning, 2021.

[54] T. N. Kipf and M. Welling. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR,
2017.

[55] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushan-
far. Peer-to-peer federated learning on graphs. arXiv
preprint arXiv:1901.11173, 2019.

[56] M. Li and Z. Zhu. Spatial-temporal fusion graph neu-
ral networks for traffic flow forecasting. In AAAI, 2021.

[57] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair
and robust federated learning through personalization.
In ICML, 2021.

[58] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Fed-
erated learning: Challenges, methods, and future di-
rections. IEEE Signal Processing Magazine, 2020.

[59] W. Li and S. Wang. Federated meta-learning for
spatial-temporal prediction. Neural Computing and
Applications, 2022.

13

[60] J. Lin and S. Wong. A new directed divergence mea-
sure and its characterization. International Journal of
General System, 1990.

[61] Y. Lin, C. Chen, C. Chen, and L. Wang. Improving
federated relational data modeling via basis alignment
and weight penalty. arXiv preprint arXiv:2011.11369,
2020.

[62] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally.
Deep gradient compression: Reducing the communi-
cation bandwidth for distributed training. In ICLR,
2018.

[63] R. Liu and H. Yu. Federated graph neural networks:
Overview, techniques and challenges. arXiv preprint
arXiv:2202.07256, 2022.

[64] T. Liu, P. Li, and Y. Gu. Glint: Decentralized fed-
erated graph learning with traffic throttling and flow
scheduling. In IWQOS, 2021.

[65] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and
S. Pan. Towards unsupervised deep graph structure
learning. In WWW, 2022.

[66] Z. Liu, L. Yang, Z. Fan, H. Peng, and P. S. Yu. Fed-
erated social recommendation with graph neural net-
work. ACM Transactions on Intelligent Systems and
Technology, 2021.

[67] S. Lonare and R. Bhramaramba. Federated approach
for privacy-preserving traffic prediction using graph
convolutional network. Journal of Shanghai Jiaotong
University (Science), 2021.

[68] G. Lou, Y. Liu, T. Zhang, and X. Zheng. Stfl:
A temporal-spatial federated learning framework for
graph neural networks. In AAAI Workshops, 2021.

[69] S. Lu, Y. Zhang, and Y. Wang. Decentralized feder-
ated learning for electronic health records. In CISS,
2020.

[70] S. Lu, Y. Zhang, Y. Wang, and C. Mack. Learn elec-
tronic health records by fully decentralized federated
learning. In NeurIPS Workshops, 2019.

[71] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
WSDM, 2011.

[72] O. Mahmood, E. Mansimov, R. Bonneau, and K. Cho.
Masked graph modeling for molecule generation. Na-
ture communications, 2021.

[73] X. Mai, Q. Fu, and Y. Chen. Packet routing with
graph attention multi-agent reinforcement learning. In
GLOBECOM, 2021.

[74] D. Manu, Y. Sheng, J. Yang, J. Deng, T. Geng, A. Li,
C. Ding, W. Jiang, and L. Yang. Fl-disco: Feder-
ated generative adversarial network for graph-based
molecule drug discovery. In ICCAD, 2021.

[75] A. K. McCallum, K. Nigam, J. Rennie, and K. Sey-
more. Automating the construction of internet portals
with machine learning. Information Retrieval, 2000.

[76] B. McMahan, E. Moore, D. Ramage, S. Hampson,
and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In AISTATS,
2017.

[77] G. Mei, Z. Guo, S. Liu, and L. Pan. Sgnn: A graph
neural network based federated learning approach by
hiding structure. In BigData, 2019.

[78] C. Meng, S. Rambhatla, and Y. Liu. Cross-node fed-
erated graph neural network for spatio-temporal data
modeling. In KDD, 2021.

[79] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl. Movielens unplugged: Experiences with an
occasionally connected recommender system. In ACM
IUI, 2003.

[80] C. Morris, N. M. Kriege, F. Bause, K. Kersting,
P. Mutzel, and M. Neumann. Tudataset: A collection
of benchmark datasets for learning with graphs. In
ICML Workshops, 2020.

[81] X. Ni, X. Xu, L. Lyu, C. Meng, and W. Wang. A
vertical federated learning framework for graph con-
volutional network. arXiv preprint arXiv:2106.11593,
2021.

[82] C. D. of Transportation. California department of
transportation. https://pems.dot.ca.gov/.

[83] N. L. Olsen, B. Markussen, and L. L. Raket. Simulta-
neous inference for misaligned multivariate functional
data. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 2018.

[84] G. Panagopoulos, G. Nikolentzos, and M. Vazirgian-
nis. Transfer graph neural networks for pandemic fore-
casting. In AAAI, 2021.

[85] J. Payne and A. Kundu. Towards deep federated de-
fenses against malware in cloud ecosystems. In TPS-
ISA, 2019.

[86] Y. Pei, R. Mao, Y. Liu, C. Chen, S. Xu, F. Qiang,
and B. E. Tech. Decentralized federated graph neural
networks. In IJCAI Workshops, 2021.

[87] H. Peng, H. Li, Y. Song, V. Zheng, and J. Li. Differen-
tially private federated knowledge graphs embedding.
In CIKM, 2021.

[88] L. Peng, N. Wang, N. Dvornek, X. Zhu, and X. Li.
Fedni: Federated graph learning with network inpaint-
ing for population-based disease prediction. IEEE
Transactions on Medical Imaging, 2022.

[89] R. C. Petersen, P. Aisen, L. A. Beckett, M. Dono-
hue, A. Gamst, D. J. Harvey, C. Jack, W. Jagust,
L. Shaw, A. Toga, et al. Alzheimer’s disease neu-
roimaging initiative (adni): clinical characterization.
Neurology, 2010.

[90] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo.
struc2vec: Learning node representations from struc-
tural identity. In KDD, 2017.

14

[91] E. Rizk and A. H. Sayed. A graph federated archi-
tecture with privacy preserving learning. In SPAWC,
2021.

[92] S. Ru, B. Zhang, Y. Jie, C. Zhang, L. Wei, and C. Gu.
Graph neural networks for privacy-preserving recom-
mendation with secure hardware. In NaNA, 2021.

[93] A. Sarkar, T. Sen, and A. K. Roy. Grafehty: Graph
neural network using federated learning for human ac-
tivity recognition. In ICMLA, 2021.

[94] F. Sattler, K.-R. Müller, and W. Samek. Clustered
federated learning: Model-agnostic distributed mul-
titask optimization under privacy constraints. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 2020.

[95] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg,
I. Titov, and M. Welling. Modeling relational data
with graph convolutional networks. In ESWC, 2018.

[96] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
and T. Eliassi-Rad. Collective classification in network
data. AI magazine, 2008.

[97] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik.
Personalized federated learning using hypernetworks.
In ICML, 2021.

[98] O. Shchur, M. Mumme, A. Bojchevski, and S. Gun-
nemann. Pitfalls of graph neural network evaluation.
arXiv preprint arXiv:1811.05868, 2018.

[99] T. Suzumura, Y. Zhou, N. Baracaldo, G. Ye,
K. Houck, R. Kawahara, A. Anwar, L. L. Stavarache,
Y. Watanabe, P. Loyola, et al. Towards federated
graph learning for collaborative financial crimes de-
tection. In NeurIPS Workshops, 2019.

[100] A. Z. Tan, H. Yu, L. Cui, and Q. Yang. Towards per-
sonalized federated learning. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[101] J. Tang, H. Gao, and H. Liu. mtrust: Discerning multi-
faceted trust in a connected world. In WSDM, 2012.

[102] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD, 2008.

[103] Y. Tang, R. Jia, X. Zhou, Z. Li, H. Jin, and C. Zhao.
Federated learning of user mobility anomaly based on
graph attention networks. In ICCC, 2021.

[104] A. Thakur, P. Sharma, and D. A. Clifton. Dy-
namic neural graphs based federated reptile for semi-
supervised multi-tasking in healthcare applications.
IEEE Journal of Biomedical and Health Informatics,
2021.

[105] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio. Graph attention networks. In
ICLR, 2018.

[106] C. Villani. Optimal transport: old and new. 2009.

[107] P. Voigt and A. Von dem Bussche. The eu general data
protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 2017.

[108] B. Wang, A. Li, H. Li, and Y. Chen. Graphfl: A feder-
ated learning framework for semi-supervised node clas-
sification on graphs. arXiv preprint arXiv:2012.04187,
2020.

[109] C. Wang, B. Chen, G. Li, and H. Wang. Fl-
agcns: Federated learning framework for automatic
graph convolutional network search. arXiv preprint
arXiv:2104.04141, 2021.

[110] H. Wang, H. Ren, and J. Leskovec. Relational mes-
sage passing for knowledge graph completion. In KDD,
2021.

[111] Z. Wang, W. Kuang, Y. Xie, L. Yao, Y. Li, B. Ding,
and J. Zhou. Federatedscope-gnn: Towards a uni-
fied, comprehensive and efficient package for federated
graph learning. In KDD, 2022.

[112] Z. Wang, R. Wen, X. Chen, S. Cao, S.-L. Huang,
B. Qian, and Y. Zheng. Online disease diagnosis
with inductive heterogeneous graph convolutional net-
works. In WWW, 2021.

[113] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie. Fedgnn:
Federated graph neural network for privacy-preserving
recommendation. In ICML Workshops, 2021.

[114] C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang, and X. Xie. A
federated graph neural network framework for privacy-
preserving personalization. Nature Communications,
2022.

[115] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes,
C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande.
Moleculenet: a benchmark for molecular machine
learning. Chemical science, 2018.

[116] Z. Wu, X. Wu, and Y. Long. Multi-level federated
graph learning and self-attention based personalized
wi-fi indoor fingerprint localization. IEEE Communi-
cations Letters, 2022.

[117] H. Xie, J. Ma, L. Xiong, and C. Yang. Federated graph
classification over non-iid graphs. In NeurIPS, 2021.

[118] Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang,
Y. Li, B. Ding, and J. Zhou. Federatedscope: A com-
prehensive and flexible federated learning platform
via message passing. arXiv preprint arXiv:2204.05011,
2022.

[119] H. Xing, O. Simeone, and S. Bi. Decentralized feder-
ated learning via sgd over wireless d2d networks. In
SPAWC, 2020.

[120] P. Xing, S. Lu, L. Wu, and H. Yu. Big-fed: Bilevel op-
timization enhanced graph-aided federated learning.
In ICML Workshops, 2021.

[121] J. Xu, R. Wang, K. Liang, and S. Picek. More is better
(mostly): On the backdoor attacks in federated graph
neural networks. arXiv preprint arXiv:2202.03195,
2022.

15

[122] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How pow-
erful are graph neural networks? In ICLR, 2019.

[123] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated
machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology,
2019.

[124] M. Ye, J. Zhang, Z. Guo, and H. J. Chao. Federated
traffic engineering with supervised learning in multi-
region networks. In ICNP, 2021.

[125] X. Yuan, J. Chen, J. Yang, N. Zhang, T. Yang,
T. Han, and A. Taherkordi. Fedstn: Graph represen-
tation driven federated learning for edge computing
enabled urban traffic flow prediction. IEEE Transac-
tions on Intelligent Transportation Systems, 2022.

[126] W. W. Zachary. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 1977.

[127] S. Zehtabi, S. Hosseinalipour, and C. G. Brin-
ton. Decentralized event-triggered federated learning
with heterogeneous communication thresholds. arXiv
preprint arXiv:2204.03726, 2022.

[128] T. Zeng, J. Guo, K. J. Kim, K. Parsons, P. Orlik,
S. Di Cairano, and W. Saad. Multi-task federated
learning for traffic prediction and its application to
route planning. In IV, 2021.

[129] B. Zhang, M. Luo, S. Feng, Z. Liu, J. Zhou, and
Q. Zheng. Ppsgcn: A privacy-preserving subgraph
sampling based distributed gcn training method.
arXiv preprint arXiv:2110.12906, 2021.

[130] C. Zhang, L. Cui, S. Yu, and J. James. A
communication-efficient federated learning scheme for
iot-based traffic forecasting. IEEE Internet of Things
Journal, 2021.

[131] C. Zhang, S. Zhang, J. James, and S. Yu. Fastgnn: A
topological information protected federated learning
approach for traffic speed forecasting. IEEE Transac-
tions on Industrial Informatics, 2021.

[132] C. Zhang, S. Zhang, S. Yu, and J. James. Graph-based
traffic forecasting via communication-efficient feder-
ated learning. In WCNC, 2022.

[133] H. Zhang, T. Shen, F. Wu, M. Yin, H. Yang, and
C. Wu. Federated graph learning–a position paper.
arXiv preprint arXiv:2105.11099, 2021.

[134] K. Zhang, Y. Wang, H. Wang, L. Huang, C. Yang,
and L. Sun. Efficient federated learning on knowledge
graphs via privacy-preserving relation embedding ag-
gregation. In ACL Workshops, 2022.

[135] K. Zhang, C. Yang, X. Li, L. Sun, and S. M. Yiu. Sub-
graph federated learning with missing neighbor gener-
ation. In NeurIPS, 2021.

[136] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo,
J. Zhang, and Y. Zheng. Traffic flow forecasting with
spatial-temporal graph diffusion network. In AAAI,
2021.

[137] Z. Zhang, Q. Liu, H. Wang, C. Lu, and C.-K. Lee.
Motif-based graph self-supervised learning for molec-
ular property prediction. In NeurIPS, 2021.

[138] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang,
and N. Shah. Data augmentation for graph neural net-
works. In AAAI, 2021.

[139] T. Zhao, X. Zhang, and S. Wang. Graphsmote: Imbal-
anced node classification on graphs with graph neural
networks. In WSDM, 2021.

[140] L. Zheng, J. Zhou, C. Chen, B. Wu, L. Wang, and
B. Zhang. Asfgnn: Automated separated-federated
graph neural network. Peer-to-Peer Networking and
Applications, 2021.

[141] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Ur-
ban computing: Concepts, methodologies, and appli-
cations. ACM Transactions on Intelligent Systems and
Technology, 2014.

[142] J. Zhou, C. Chen, L. Zheng, H. Wu, J. Wu, X. Zheng,
B. Wu, Z. Liu, and L. Wang. Vertically federated
graph neural network for privacy-preserving node clas-
sification. In IJCAI, 2022.

[143] H. Zhu, J. Xu, S. Liu, and Y. Jin. Federated learning
on non-iid data: A survey. Neurocomputing, 2021.

[144] W. Zhu, A. White, and J. Luo. Federated learning of
molecular properties in a heterogeneous setting. arXiv
preprint arXiv:2109.07258, 2021.

[145] Z. Zhu, J. Zhu, J. Liu, and Y. Liu. Federated bandit:
A gossiping approach. In SIGMETRICS, 2021.

[146] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wag-
ner, E. Bluemke, J.-M. Nounahon, J. Passerat-
Palmbach, K. Prakash, N. Rose, et al. Pysyft: A li-
brary for easy federated learning. In Federated Learn-
ing Systems. 2021.

16

	1 Introduction
	2 Problem Formulation
	2.1 Graph Machine Learning
	2.2 Federated Learning
	2.3 Federated Graph Machine Learning

	3 FL with Structured Data
	3.1 Cross-Client Information Reconstruction
	3.1.1 Intermediate Result Transmission
	3.1.2 Missing Neighbor Generation

	3.2 Overlapping Instance Alignment
	3.2.1 Homogeneous Graph-Based Alignment
	3.2.2 KG-Based Alignment
	3.2.3 User-Item Graph-Based Alignment

	3.3 Non-IID Data Adaptation
	3.3.1 Single Global Model-Based Methods
	3.3.2 Personalized Model-Based Methods

	4 Structured FL
	4.1 Centralized Aggregation
	4.2 Fully Decentralized Transmission

	5 Applications
	5.1 Transportation
	5.2 Computer Vision
	5.3 Recommendation Systems
	5.4 Healthcare
	5.5 Other Applications

	6 Datasets and Platforms
	6.1 Datasets
	6.2 Platforms

	7 Open Challenges and Future Directions
	8 Conclusions
	9 Acknowledgements
	10 REFERENCES

