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Abstract. Attributed networks are a type of graph structured data
used in many real-world scenarios. Detecting anomalies on attributed
networks has a wide spectrum of applications such as spammer detec-
tion and fraud detection. Although this research area draws increasing
attention in the last few years, previous works are mostly unsupervised
because of expensive costs of labeling ground truth anomalies. Many
recent studies have shown different types of anomalies are often mixed
together on attributed networks and such invaluable human knowledge
could provide complementary insights in advancing anomaly detection
on attributed networks. To this end, we study the novel problem of
modeling and integrating human knowledge of different anomaly types
for attributed network anomaly detection. Specifically, we first model
prior human knowledge through a novel data augmentation strategy. We
then integrate the modeled knowledge in a Siamese graph neural net-
work encoder through a well-designed contrastive loss. In the end, we
train a decoder to reconstruct the original networks from the node rep-
resentations learned by the encoder, and rank nodes according to its
reconstruction error as the anomaly metric. Experiments on five real-
world datasets demonstrate that the proposed framework outperforms
the state-of-the-art anomaly detection algorithms.

Keywords: Anomaly detection · Graph neural networks ·
Self-supervised learning

1 Introduction

Attributed networks are a kind of graph structured data, which exists ubiq-
uitously in many real-world scenarios, such as social networks, biological net-
works, and financial transaction networks [1,22]. Over the past few decades,
many research efforts have been devoted to performing different learning tasks
on attributed networks. Anomaly detection is one such task, which in the con-
text of attributed networks aims to identify nodes with significantly different
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patterns from other nodes in terms of their attributes, communities, etc. [1,28].
It has become a critical research area that has broad applications in various
real-world scenarios [4], such as spammer detection [1] and fraud detection [3].

Extensive progress has been made towards anomaly detection on attributed
networks over the past few years [8–10,19,20,25,30,31]. Generally speaking,
existing anomaly detection approaches can be mainly divided into two main-
streams, namely Non-deep Learning (Non-DL) methods and Deep Learning
(DL) methods. Non-DL methods typically rely on various types of heuristic
anomaly measurements [30,31,34,35] or employ matrix decomposition tech-
niques [19,20,29] to detect anomalies while DL methods often resort to Graph
Neural Networks (GNNs) for the detection of anomalies [8,10,21]. It should
be noted that DL methods have shown superior performance over traditional
Non-DL methods [19,25,30,31] due to the strong capability of GNNs for learn-
ing node representations. Specifically, DL methods usually follow an encoder-
decoder learning scheme, where the encoder takes the given attributed network
as input, while the decoder reconstructs the graph structure and node attributes
and compares the reconstructed data with the original input for anomaly detec-
tion [8–10]. However, despite the superior performance, these approaches mainly
detect anomalies in an unsupervised manner due to the expensive labeling cost
of ground truth anomalies. Many recent studies have shown that there often
exist mixed types of anomalies on attributed networks, w.r.t. graph structure
and node attributes [19,44].

Fig. 1. A toy example of attribute anomaly and
structure anomaly on an attributed network.

For example, we present
two typical anomaly types,
namely attribute anomaly and
structure anomaly in Fig. 1.
There are a community of
CA software engineers and a
community of MA salesperson
in this network. For attribute
anomaly, the attribute value of node 4 is significantly different from others,
thus it is suspicious to be an attribute anomaly; for structure anomaly, node 6
belongs to the CA software engineer community by its attributes, however, it
also connects to a remotely related community of MA salesperson, rendering it
structurally abnormal. Beyond the anomalies in the above example, more types
of commonly encountered anomalies, e.g., community anomalies, have also been
identified and summarized by existing works [1,20]. As a summary, these stud-
ies equipped us with rich prior human knowledge of different anomaly types. In
fact, many learning related problems have witnessed a significant performance
improvement when human knowledge is considered [33,36,42]. Motivated by
such success, in this paper, we study an important research problem: whether
the prior human knowledge of different anomaly types could be harnessed to
advance anomaly detection on attributed networks.
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Although leveraging prior human knowledge of different anomaly types could
be potentially helpful for attributed network anomaly detection, how to properly
model and utilize such knowledge remains a daunting task mainly because of the
following two challenges: (1) Knowledge Modeling Challenge. How to properly
model the prior human knowledge of different types of anomalies on attributed
networks is the first challenge that needs to be tackled. The major problem here
is that such knowledge only encodes human understanding of possible anoma-
lous patterns on attributed networks, thus it does not have a concrete form and
cannot be directly leveraged. While many existing studies proposed to model
human knowledge as an invaluable data resource in addition to the original
input data [18,33,42], it still remains unclear how to model human knowledge
into concrete data resource that can be directly utilized in our case. (2) Knowl-
edge Integration Challenge. The second challenge centers around integrating the
prior human knowledge of anomaly types on attributed networks seamlessly into
the detection model. Traditionally, many existing works regard human knowl-
edge as an explicit supervision signal and integrate it into learning models by
designing a specific loss term [6,26,36]. However, in our problem, existing human
knowledge of anomaly types is not exhaustive, and an effective knowledge inte-
gration mechanism needs to be flexible enough to accommodate the available
knowledge rather than design a flawed loss term informed only by partial obser-
vation.

To tackle the above challenges, in this paper, we propose contrastive
anomaly detection (conad), a principled contrastive anomaly detection
framework on attributed networks. conad is capable of identifying anomalous
nodes on attributed networks by leveraging the prior human knowledge of dif-
ferent anomaly types. First, to tackle the knowledge modeling challenge, we
propose a novel data augmentation strategy which explicitly models and for-
malizes the prior human knowledge of different anomaly types as contrastive
samples (i.e., nodes whose patterns deviate significantly from existing nodes on
the input attributed network) on the augmented attributed network. Second,
to address the knowledge integration challenge, we propose to tightly integrate
the contrastive samples on the augmented attributed network into the anomaly
detection model with a well-designed contrastive loss. Methodologically, we first
propose to generate an augmented attributed network to model known anomaly
types. A Siamese GNN is employed as the encoder function to map both the
input attributed network and the augmented attributed network into an embed-
ding space. After that, a contrastive loss is designed based upon the normal
nodes on the input attributed network and contrastive samples on the aug-
mented attributed network, through which the human knowledge of different
anomaly types can be well harnessed. The proposed contrastive loss is jointly
considered with a graph reconstruction loss for end-to-end model training. Dur-
ing the detection phase, the suspicious score of each node is measured by the
magnitude of the reconstruction error, which serves as the metric to identify
anomalies, i.e., a larger error indicates the node has a higher chance of being
abnormal.
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The main contributions of this paper can be summarized as follows: (1)
Problem Formulation. We study a novel problem of modeling and leverag-
ing prior human knowledge of different anomaly types for anomaly detection
on attributed networks. (2) Algorithmic Design. We propose a principled
framework that models prior human knowledge of different anomaly types as
contrastive samples in the augmented attributed network; and integrates the
contrastive samples into the anomaly detection model with a well-designed
contrastive loss. (3) Experimental Evaluations. We perform comprehensive
experimental evaluations on real-world datasets to demonstrate the superiority
of the proposed contrastive attributed network anomaly detection framework.

2 Problem Definition

Notations. We use bold uppercase letters (e.g. A), bold lowercase letters (e.g.
x), and regular lowercase letters (e.g. a) to denote matrices, vectors, and scalars,
respectively. Besides, for a matrix A, we represent its (i, j)-th entry as Aij .
Similarly, for a vector y, its i-th element is denoted by yi.

Let G = {A,X} be an input attributed network, where A ∈ R
n×n and

X ∈ R
n×d denote the adjacency matrix and attribute matrix, respectively. The

problem of anomaly detection on attributed networks aims to assign a suspicion
score to each node that quantifies how likely it is to be abnormal. To utilize
prior human knowledge of anomaly types in this process, we assume there is an
additional human knowledge input ξ that consists of typical types of anomalies
studied in previous works and observed in real-world scenarios [1,8,22], e.g.,
attribute and structure anomalies shown in Fig. 1 before. With the additional
knowledge ξ, we hence formulate the following research problem.

Definition 1 Modeling and Leveraging Prior Human Knowledge of
Anomaly Types for Attributed Network Anomaly Detection. Given an
attributed network G = {A,X}, prior human knowledge ξ of anomaly types, our
goal is to model and formalize the abstract human knowledge ξ into concrete data
(denoted as M(ξ)), and then integrate it into a principled detection model f that
is capable of encoding both M(ξ) and G and ultimately detect anomalies in G.

3 The Proposed Framework

In this section, we introduce the proposed framework conad. It consists of
three major components as shown in Fig. 2, namely, knowledge modeling module,
knowledge integration module, and anomaly detection module. The overview of
each module is listed below followed by detailed descriptions.

Knowledge Modeling Module. Given the prior human knowledge ξ of different
anomaly types, we first use a novel data augmentation strategy to model and
formalize it as concrete contrastive samples. We achieve this by introducing
each known anomaly type encoded in ξ to the input attributed network G and
generate the augmented attributed network Gano accordingly.
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Fig. 2. Overview of conad. The lower-left box is the input attributed network for
anomaly detection. The upper-left box shows the knowledge modeling module. Dense,
Outlying, Deviated, and Disproportionate correspond to the prior human knowledge
of anomaly types. The middle is the encoder built on Siamese GNN to learn node
representations. The upper-right box presents two contrast strategies to integrate the
prior human knowledge modeled in Gano. The lower-right part is the decoder that
reconstructs both the structure and attributes of the input attributed network, which
detects anomalies with the reconstruction error.

Knowledge Integration Module. After modeling prior human knowledge ξ, we
feed both G and each Gano into a graph encoding architecture in which a Siamese
GNN acts as the encoder to learn representations of nodes. By using a Siamese
network, both graphs will be encoded into the same latent space, making it
possible to contrast between the node representations of G and Gano. After the
encoding phase, to tightly integrate the human knowledge in Gano, we propose
a well-designed contrastive loss. Specifically, the contrastive loss will guide the
encoder to represent normal nodes on the input attributed network and con-
trastive samples on the augmented attributed network differently. Consequently,
anomaly patterns of the augmented nodes can be captured.

Anomaly Detection Module. With the learned node representations, we aim
to reconstruct the graph structure and node attributes of the input attributed
network G with a decoder. The reconstruction errors produced by the recon-
struction phase are leveraged as suspicion scores in detecting anomalies on G.

3.1 Knowledge Modeling Module

We introduce the data augmentation strategy used to model the prior human
knowledge of different anomaly types on attributed networks in this subsection.
We consider four different types of anomalies on attributed networks (from both
the structure side and the attribute side), and introduce a certain amount of
anomalies belonging to each anomaly type to the input attributed network G
to form an augmented attributed network Gano. Each of these four augmented
anomaly types is illustrated in Fig. 3.
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Fig. 3. An illustration of four different types of anomalies on attributed networks based
on prior human knowledge.

Structure – high-degree. In social networks, spammers often follow and inter-
act with excessively numerous users [14]. To simulate this anomaly type, we
choose a certain amount of nodes with average degrees, and then connect them
to many other random nodes. The chosen nodes thus have an unusually high
degree and are considered structurally abnormal in the attributed network.

Structure – outlying. Another abnormal account type in social or e-commerce
networks is created in large quantities to spam certain posts [38]. They behave
like regular users but few users will follow them, and thus they do not belong
to any communities, thus different from the majority of the whole network and
deemed structurally abnormal. We simulate anomaly type by choosing a certain
amount of nodes and drop most of their edges on the input attributed network.

Attribute – deviated. A common attribute anomaly on attributed network is
a node with deviated attribute values from its neighbors [31]. In other words,
the attribute value of this node could be rather different from others in the same
community. To model this anomaly type, we first choose certain center nodes.
For each center node, we randomly sample a number of other nodes from the
entire network. We then calculate the similarity between the attribute vectors
of this center node and the others, and then assign the attribute vector of the
least similar one to the center node. In fact, through such generation process,
we are introducing community anomalies to the input attributed network.

Attribute – disproportionate. In e-commerce websites, dishonest sellers might
want to promote their products by setting unreasonably low prices or achieve
high sale volumes by recruiting dishonest buyers [11]. Both of these sale frauds
will result in unusually small or large numbers in certain node attributes. We
hence largely scale up or scale down the values of certain node attributes with a
preset probability to simulate this anomaly type of disproportionate numerical
values in certain node attributes.

After applying the four augmentation strategies above, we obtain an aug-
mented attributed network Gano, referred to as anomalous view. In the anoma-
lous view Gano, we have a label vector y, where yi = 1 denotes that node i
corresponds to one of those four known anomaly types, and yi = 0 otherwise.
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3.2 Knowledge Integration Module

Now, we integrate the modeled human knowledge of anomaly types into the
detection model through two essential components: (1) learning node represen-
tations; and (2) contrasting between different views.

Learning Node Representations. We first discuss how to encode both G and
Gano. In particular, we employ a Siamese GNN architecture as an encoder to
learn embeddings for nodes in both G and Gano. Generally, various GNNs can be
leveraged to learn node representations from attributed networks [40] based on
the information aggregation mechanism: h(l+1)

i = AGG({h(l)
i } ∪ {h(l)

j : j ∈ Ni})

where h(l)
i denotes the representation of node i in the l-th layer, and h(0)

i is the
input attribute of node i. Ni is the set of all neighbors of node i. AGG(·) is
an aggregation function that can be implemented by mean pooling, max pool-
ing, and many other operations [24]. In this paper, we specify the information
aggregation based on the self-attention mechanism in Graph Attention Net-
works (GAT) [39]. The reason is that GAT is able to account for different neigh-
bors’ contributions to the central node via assigning appropriate correspond-
ing importance weights. Thus it is capable of capturing complicated relations
in attributed networks. Each GAT layer follows the information propagation
scheme of h(l+1)

i = σ(
∑

j∈Ni
αijW(l)h(l)

j ), where αij = softmax(eij) = eij∑
k∈Ni

eik

and eij = σ
(
a� [Whi‖Whj ]

)
. Here αij is the attention weight between node

i and j. W(l) is a learnable parameter matrix for the l-th layer. W and a are
learnable parameters that are shared by all GAT layers for learning the attention
weights. ‖ denotes the concatenation operation. In practice, we stack multiple
GAT layers to form the encoder Enc for node representation learning.

Contrasting Between Views. To fully harness the power of human knowledge
in Gano, we propose to make a contrast between Gano and the given attributed
network (normal view) G. We expect the anomalous patterns on the attributed
network can be well characterized through such contrastive process. Since the
augmented anomalous nodes become different from both themselves and their
neighbors, we consider two different contrast strategies in this paper, and we
name them as Siamese contrast and Triplet contrast. The former contrast strat-
egy is performed by comparing the embedding representation of each abnormal
node in the anomalous view and its counterpart in the normal view. The lat-
ter contrastive strategy is performed for a connected node pair (i, j) where j
is considered abnormal in the anomalous view and i remains intact. It is called
“triplet” because three representations, i.e., the representation of i in the normal
view and the representations of j in both the normal and anomalous views are
involved. These two contrast strategies are described in detail below.
Strategy 1: Siamese Contrast. Suppose Enc encodes G and Gano through stacked
GAT layers into the final representations Z and Ẑ. Siamese contrast is performed
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between zi and ẑi, i.e., the representations of each node i in the normal view and
the anomalous view. The loss function of Siamese contrast is defined as follows:

Lsc =
1
n

n∑

i=1

(Iyi=0 ·d (zi, ẑi) + Iyi=1 ·max {0,m − d (zi, ẑi)}) (1)

where I is the indicator function of the condition in its subscript. When applying
the Siamese contrastive loss, if yi = 1, i.e., node i is considered abnormal in Gano,
the distance between its representation in the normal and the anomalous view,
d(zi, ẑi) will be maximized with a margin no smaller than m. If yi = 0, i.e., node
i is not considered abnormal in Gano, then d(zi, ẑi) will be minimized.
Strategy 2: Triplet Contrast. In addition to the above strategy, we further pro-
pose Triplet contrast that works on a triplet of node representations. Specifically,
we consider each connected node pair (i, j) where j is an augmented anomaly
in Gano while i remains intact. The triplet of representations consists of three
representations zi, zj , and ẑj , and the loss function is defined as:

Ltc =
∑

∀Aij=1,
yi=0, yj=1

max {0,m − (d (zi, ẑj) − d (zi, zj))} . (2)

Through minimizing this loss function, our model will increase the gap between
two distances with a margin no smaller than m. Here d(zi, zj) is the distance
between the representations of i and its neighbor j in the normal view, and
d(zi, ẑj) is the distance between the representation of node i in the normal view
and that of its neighbor j in the anomalous view. Therefore, conad can enforce
an augmented anomaly to be far away from its neighbors, and thus the human
knowledge regarding this anomaly type can be harnessed.

3.3 Anomaly Detection Module

Besides learning from Gano which models prior human knowledge of anomaly
types, conad also needs to learn from the input attributed network G to detect
anomalies in it. Towards this objective, we aim to reconstruct the graph structure
and node attributes based on the learned node representations in normal view Z.
It has been proved in previous works [7,8,19] that reconstructing structures and
attributes helps the model to learn the normal patterns of the input attributed
networks, and since anomalies cannot be well reconstructed, they will therefore
be detected. Specifically, our model uses a decoder function Dec on the encoder
output Z. Dec consists of a GAT layer to reconstruct the adjacency and attribute
matrix from Z. Frobenius norm of the difference between the input and the
reconstructed matrix, i.e., reconstruction error, serves as the loss function:

Â = σ
(
Z · Z�)

, X̂ = GATLayer (A, Z) . (3)

Lrecon = λ
∥
∥
∥A − Â

∥
∥
∥
F

+ (1 − λ) ·
∥
∥
∥X − X̂

∥
∥
∥
F

. (4)

Here, σ(·) is a non-linear activation function, e.g., ReLU [27]. (·)� and ‖ · ‖2 are
the transpose and Frobenius norm on matrices. λ is a weighting factor to balance
the scales of the two reconstruction errors on the structure and attributes.
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3.4 Summary

We summarize the whole process of our proposed model conad in this subsec-
tion. Our input is an attributed network G = {A,X} and prior human knowledge
of anomaly types ξ. We first model ξ through a novel data augmentation strat-
egy described in Sect. 3.1. We then have two attributed networks G and Gano. A
Siamese GNN encoder Enc is used to learn from prior human knowledge mod-
eled in Gano by contrasting between node representations in G and Gano with the
contrastive loss defined in Eq. (1) or Eq. (2). During this process, Enc learns to
distinguish normal and abnormal representations in the latent space, and thus
integrates the prior human knowledge. The node representations of G are fur-
ther fed into an anomaly detection module described in Eq. (3) to learn the
normal patterns in G with the reconstruction loss Lrecon. Hence conad learns
from both knowledge ξ and attributed network G with Lcl and Lrecon, respec-
tively. The total loss of conad becomes the summation of the contrastive and
reconstruction loss (η is also a weighting factor to balance the two loss terms).

Lconad = η · Lcl + (1 − η)Lrecon, Lcl ∈ {Lsc,Ltc
}

. (5)

4 Experiments

4.1 Datasets

Five different real-world datasets, namely, Flickr [15], Amazon [35], Enron [25],
Facebook [23], and Twitter [23], are used to evaluate the anomaly detection
performance of conad. (1) Flickr dataset contains user following and follower
relations on the eponymous photo-sharing website. There are 7,575 nodes (600
ground truth anomalies) and 23,938 edges in the entire network, and we follow
the same settings as [8,10,21] to obtain ground truth anomalies. (2) Amazon
& Enron. These two datasets contain ground truth anomalies. The Amazon
dataset represents co-purchase relations between items. The anomalies here con-
sist of erroneous categories or prices. There are 1,418 nodes (28 ground truth
anomalies) and 3,695 edges. Enron is a corporate email network. The anomalies
are employees who involve in the accounting fraud in this company. There are
13,533 nodes (5 ground truth anomalies) and 176,987 edges in total. (3) Facebook
& Twitter. We also use social networks in Facebook and Twitter, where users
form relations with others and share their “circles” of friends. We obtain ground
truth anomalies by introducing nodes that connect to randomly selected circles
or have abnormal attributes like [8]. There are 4,039 nodes (400 ground truth
anomalies) and 88,234 edges in the Facebook dataset, and we use 4,865 nodes
(500 ground truth anomalies) and 66,772 edges in the Twitter dataset1.

1 The anomaly labels in Flickr, Facebook, and Twitter datasets result from manual
injection, and the injection rule coincides with two of our data augmentations.
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4.2 Experimental Settings

We compare our proposed framework with the following four popular baseline
methods, including LOF [2], DOMINANT [8], AEGIS [7], and AnomalyDAE
[10]. Among them, the latter three are the state-of-the-art methods that employ
GNNs and a comparison with them can validate the superiority of our proposed
framework which harnesses the power of human knowledge.

For our proposed framework conad, the encoder Enc is initialized with two
layers of GAT, where the hidden sizes are 128 and 64, respectively. For the recon-
struction part, an additional GAT layer is applied for attribute reconstruction,
while dot product and sigmoid activation are applied for structure reconstruc-
tion. Two attention heads and LeakyReLU [41] activation are used for all GAT
layers. The margin m is set to 0.5 for both Siamese and Triplet losses, and the
model is denoted by conad-S and conad-T corresponding to the specific con-
trastive loss used, i.e., Siamese and Triplet. Euclidean distance is used as the
distance function d(·, ·). The ratio of augmented anomalies r is 10% for smaller
networks, i.e., Amazon, Flickr, Facebook, and Twitter, and 20% for the larger
one, i.e., Enron. The weighting factors λ and η are set to 0.9 and 0.7, respec-
tively. We train the model with Adam [17]. The area under ROC (AUC) serves
as the evaluation metric of anomaly detection performance.

Table 1. Anomaly detection performance (AUC scores) comparison. conad consis-
tently performs the best across all three datasets (higher is better).

Dataset Amazon Enron Flickr Facebook Twitter

LOF 0.510 0.581 0.661 0.522 0.511

DOMINANT 0.592 0.716 0.749 0.554 0.571

AEGIS 0.556 0.602 0.765 0.659 0.645

AnomalyDAE 0.610 0.552 0.694 0.741 0.688

conad-S 0.635 0.731 0.782 0.612 0.670

conad-T 0.620 0.731 0.759 0.863 0.742

4.3 Anomaly Detection Performance Comparison

Table 1 shows the anomaly detection performance of conad and baselines, where
conad outperforms all others in all of the five real-world datasets used. Specif-
ically, GNN-based models generally perform better than LOF, which does not
consider structure information. By modeling and integrating prior human knowl-
edge, conad achieves better performance than the other three GNN-based unsu-
pervised anomaly detection models. Besides, for networks with explicit commu-
nities, i.e., Facebook and Twitter, conad-T, which contrasts between each pair
of neighbors, performs better than conad-S, which only contrasts between the
representations of each individual node in the normal and anomalous views.
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4.4 Ablation Study

In this subsection, we conduct further experiments to study the improvements
brought by each module individually in the proposed framework conad on Ama-
zon dataset. The results are shown in Table 2, and similar observations can also
be found in other datasets. We first study the influence of the types of contrast-
ing between views, i.e., Siamese contrast and Triplet contrast. The performance
of conad-T with Triplet contrast is slightly worse than conad-S with Siamese

Table 2. Ablation study on the Amazon
dataset.

Variants of conad AUC score

conad-S 0.635

conad-T 0.620

w/o attribute anomalies 0.621

w/o structure anomalies 0.628

w/o contrasting between views 0.592

w/o reconstruction 0.510

contrast. However, the perfor-
mance on Facebook and Twitter
datasets shown in the previous sub-
section demonstrates the opposite.
We speculate that it is because the co-
purchase relation in Amazon datasets
does not have explicit communities,
contrary to the friendship relation in
the two social networks. Therefore,
contrasting between neighbors is not
very helpful. We then study how the amount of prior human knowledge modeled
affects the performance of conad. Towards this goal, we change the data aug-
mentation strategy in 3.1, where we solely model human knowledge of structure
(w/o attribute anomalies) or attribute (w/o structure anomalies) anomalies. The
performance of conad decrease with either of these two types removed, show-
ing that the more knowledge of anomaly types is given, the more conad can
harness it to facilitate anomaly detection. We also investigate the effectiveness
of the knowledge integration module. Concretely, we remove this module which
contrasts between normal and anomalous views entirely. The resulting model
becomes almost identical to DOMINANT, and the corresponding performance
drops drastically, which demonstrates that integrating prior human knowledge
is crucial in the superior performance of conad. Lastly, we study the influence
of the reconstruction. We remove the decoder used to reconstruct the structure
and attributes of the input attributed network, and apply LOF instead to the
nodes representations learned by the encoder. The performance shows that LOF
fails to detect anomalies from only those node representations. It proves that
the decoder and reconstruction also contribute a lot to anomaly detection.

4.5 Robustness of conad W.r.t. Different Ratios of Anomalies

At last, we study the robustness of conad on Flickr dataset where the ground
truth anomalies can be easily tuned. We omit the results on other datasets
due to the observation of similar patterns. We vary the ratios of ground truth
anomalies in Flickr among 2.5%, 5%, 7.5%, and 10% of the total number of nodes,
and find that conad maintains steady performances with AUC scores of 0.760,
0.772, 0.781, and 0.778. It demonstrates that conad is very robust in detecting
anomalies in attributed networks when the ratio of anomalies present varies.
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5 Related Works

5.1 Attributed Network Anomaly Detection

Attributed networks are a kind of graph structured data that exist ubiqui-
tously in many real-world scenarios. Detecting anomalies in attributed networks
is of vital importance for anti-fraud, anti-money laundering, and other safety-
critical applications [1,22]. Therefore, attributed network anomaly detection has
attracted an increasingly amount of research attentions in recent years. Existing
approaches can be broadly categorized as traditional machine learning (Non-DL)
methods and deep learning (DL) methods. Non-DL methods are often developed
based on certain heuristic anomaly metrics, e.g., ConSub [35], FocusCO [31],
and AMEN [30], or matrix decomposition techniques, e.g., Radar [19], ANOMA-
LOUS [29], and ALAD [20]. More recently, many DL anomaly detection methods
have been proposed, which often resort to GNNs due to their superior representa-
tion learning capability. Typical methods along this line include DOMINANT [8],
AEGIS [7], and AnomalyDAE [10]. Our proposed conad differs from the meth-
ods introduced above as the above methods are mainly unsupervised while ours
explicitly models the human knowledge of different anomaly types on attributed
networks and tightly incorporate such knowledge into the detection model.

5.2 Contrastive Learning

Supervised learning achieves great success in numerous machine learning areas,
but one major disadvantage of it is that a large amount of labeled data is
required to train a descent model. To ease the reliance on labeled data, con-
trastive learning (CL) has gained popularity as a novel self-supervised learning
(SSL) paradigm. It often utilizes data augmentation techniques to obtain dif-
ferent views of the data, and leverages InfoMax principle [13] to maximize the
similarity between pairs of positive views while minimize pairs of negative views.
With contrastive learning, SSL models [5,16,37] achieve comparable performance
in image classification against their supervised counterparts. CL frameworks also
enjoys successes in graph representation learning [12,32,43] where techniques
designed specifically for graph structured data, such as random walk and graph
diffusion, can be used to generative positive views.

6 Conclusions

In this paper, we propose conad, a contrastive learning framework capable
of leveraging human knowledge to detect anomalies on attributed networks.
Specifically, we first model human knowledge of real-world anomalies through
a data augmentation approach. We then train a Siamese graph neural network
with a contrastive loss to encode both the modeled knowledge and the origi-
nal attributed networks. Finally, we use reconstruction loss to obtain anomaly
scores. Experiments on several datasets with different nature and characteristics
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show detection performance improvements compared to state-of-the-art models.
Furthermore, we analyze the benefit brought about by each part in conad and
show its robustness w.r.t. different anomaly ratios on the attributed network.
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