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ABSTRACT
In modern pavement management systems, pavement roughness is

an important indicator of pavement performance, and it reflects the

smoothness of pavement surface. International Roughness Index

(IRI) is the de-facto metric to quantitatively analyze the roughness

of pavement surface. The pavement with high IRI not only reduces

the lifetime of vehicles, but also raises the risk of car accidents.

Accurate prediction of IRI becomes a key task for the pavement

management system, and it helps the transportation department

refurbish the pavement in time. However, existing models are pro-

posed on top of small datasets, and have poor performance. Besides,

they only consider cross-sectional features of the pavements with-

out any time-series information. In order to better capture the latent

relationship between the cross-sectional and time-series features,

we propose a novel feature fusion LSTM-BPNNmodel. LSTM-BPNN

first learns the cross-sectional and time-series features with two

neural networks separately, then it fuses both features via an atten-

tion mechanism. Experimental results on a high-quality real-world

dataset clearly demonstrate that the new model outperforms exist-

ing considerable alternatives.
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1 INTRODUCTION
Pavement roughness is a vital factor indicating the availability of

pavements as well as drivers’ comfort. Uneven pavement surface

not only affects the running costs of vehicles, such as increasing fuel

consumption, reducing driving speed, and extending the traveling

time costs, but also increases the risk of car accidents. With the con-

tinuous improvement of pavement service and the establishment of

modern management system, pavement roughness has become one

of the most important indicators of pavement performance. In order

to quantitatively analyze the roughness of pavement surface, the

International Roughness Index (IRI)
1
is defined as the ratio of total

standard body suspension displacement to the distance traveled.

Nowadays, IRI has developed into a general indicator of pavement

roughness in global.

Prediction model, which provides descriptions and predictions

to maintain pavements in serviceable and functional conditions,

1
https://en.wikipedia.org/w/index.php?title=International_Roughness_Index
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Table 1: Comparison of different pavement performance predictionmodels. Table 2 lists the descriptions of the abbreviations.

References Targets Models Metrics Features Data sizes
Hakim et al. [1] IRI BPNN R2 PSC, CLT, Per 184

Attoh-Okine et al. [3] IRI BPNN Error PSC, Per -

Choi et al. [6] IRI BPNN RMSE PSC, CLT, TRF, Per 117

Gong et al. [11] Cracking GBM, XGBoost MAE PSC, CLT, TRF, Per 414

Gong et al. [12] Rutting BPNN R2, RMSE PSC, CLT, TRF, Per 440

Hossain et al. [16] IRI BPNN RMSE CLT, TRF, Per, 214

Torre et al. [17] ∆ IRI BPNN RMSE PSC, CLT, TRF, Per -

Mazari et al. [19] IRI BPNN+GEP R2, RMSE TRF, Per -

Saghafi [26] Faulting BPNN R2, RMSE PSC, Per 405

Ziari et al. [33] IRI BPNN, GMDH R2, RMSE PSC, CLT, TRF, Per 205

Our paper IRI LSTM-BPNN R2, RMSE PSC, CLT, TRF, Per 2243

is a critical component in pavement management systems, like

traffic forecasting [2], IRI prediction, rutting prediction, etc. Among

various prediction models, accurate IRI prediction model helps

pavement management departments to understand the tendency of

pavement performance in time, and thus they are able to refurbish

the pavement right away rather than after a longer time interval

left for human detection.

Many researchers have been working on IRI prediction models.

Traditional experience-based models such as Mechanistic Empir-

ical pavement Design Guide (MEPDG) has been proved to yield

worse performance than machine learning models [1]. Up to now,

many machine learning models for pavement performance pre-

diction have been developed. One type of the model is tree based

model [11, 13]. Another one is Back Propagation Neural Network

(BPNN) model [3, 6, 17, 19]. Compared to the experience-based

model, machine learning models yield better performance. For one

thing, BPNN and tree based models can better capture latent rela-

tionships among various features. Besides, compared with tradi-

tional models, the inputs of the machine learning models can be

easily extended by adding more features to improve the predicting

performance.

However, the existing models are mostly built on datasets which

contain a small number of data records with simplified pavement

features. Therefore, they hardly achieve accurate predictions in

real large scale scenarios. Actually, many time-series features are

simplified as cross-sectional data, neglecting the varying tendency

of the whole series. Table 1 summarizes the statistics of datasets

used by previous works. It is easy to figure out that only hundreds

of data points are used for learning models, which leads to poor

generalization. Second, most of the existing models do not cover

the complete feature set (i.e., Per, PSC, CLT, TRF). Even if some

models (e.g., Ziari et al. [33]) process the whole feature set; for the

climate features, however, they just compute several user-defined

statistics (e.g., averages, sums and variances), and fail to capture

the deep pattern of climate changes. Consequently, many complex

time-series features with latent relationships in real situations are

neglected. To the best of our knowledge, none of the previous stud-

ies has combined time-series features and cross-sectional features

for IRI prediction, in which way specific changes in the series can

be captured for the prediction. In order to obtain an IRI prediction

model with high accuracy, the critical challenge is how to effectively
fuse these features, including cross-sectional and time series ones.

In this paper, we first create a high-quality dataset for the IRI

prediction with domain experts. The dataset contains 2243 data

records and it is about 10 times larger than previous used datasets.

On the basis of the dataset, we propose a novel feature fusion model,

named LSTM-BPNN, for the IRI prediction task. We make use of

Long Short-Term Memory (LSTM) [15] to learn the time-series

related features, while using BPNN [14] for the cross-sectional fea-

tures of different pavements. The two types of features are implicitly

fused according to the attention mechanism. The attention method

automatically adjusts the weight on time series by considering the

influence of the cross-sectional features. We conducted comprehen-

sive experiments on top of the high-quality dataset, and the results

demonstrate the effectiveness of the LSTM-BPNNmodel comparing

to different kinds of traditional machine learning models. The new

model achieves 0.867 R2 for the IRI regression.
Our contributions are four-fold:

• We propose a feature fusion LSTM-BPNN model based on

neural network to improve the accuracy of IRI prediction.

• We propose an attention mechanism to effectively fuse the

cross-sectional and time-series features.

• We create a high-quality and large dataset for the IRI predic-

tion task.

• We conduct empirical studies on a high-quality dataset to

demonstrate the advantages of the LSTM-BPNN model.

2 RELATEDWORK
In this section, we give a brief review about the prediction models

of pavement performance.

Tree-based prediction models. Recently Gong et al. [11] used
three different treemodels (e.g., gradient boostedmodel, XGBoost [10],

random forest regression) to predict the cracking value, which is

an index of pavement performance. Nevertheless, the models above

require myriads of pavement surface related features, leading to

limited usage because of the complex field measurements. In an-

other work [13], he also proposed a model based on random forest

regression for analyzing how IRI is affected by different pavement

surface features. The features used as model input still require an
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Table 2: The abbreviations of pavement features used in this paper.

Pavement structure and construction (PSC)

Age

The interval between the pavement first

construction and the IRI measurement.

ELE Elevation of pavement.

LAT Latitude of pavement. PM Material of pavement.

LONGI Longitude of pavement. PC Pavement conditions.

Climate (CLT)
AWD Annual wet days. FI Annual freeze index.

AS Annual snowfall. FT Annual freeze thaw.

CR Climate region of pavement. AAT Annual average temperature.

AMINT Annual minimum temperature. TAP Total annual precipitation.

AAMAXT Annual average maximum temperature. AMAXT Annual maximum temperature.

AAMINT Annual average minimum temperature. AIPD Annual intense precipitation days.

ADT32 Annual days temperature above 32
◦
C. ADT0 Annual days temperature below 0

◦
C.

Traffic (TRF) Performance (Per)
AADTT Annual average daily truck traffic. IRI International Roughness Index.

AADKESAL

Annual equivalent single-axle loads

in thousands.

IRI0

The first IRI measured after the latest

(re-)construction.

array of field measurements, regardless of the pavement manage-

ment costs and thus cannot be directly used for IRI prediction when

aiming at reducing measuring expenditure.

Single-layered Back Propagation Neural Network. Up to

now, many single-layered BPNNs have been proposed. Torre en al.

[17] found that the BPNN produced reasonable IRI predictions in

several existing flexible sections. Attoh-Okine [3] used real pave-

ment data from Kansas DOT to investigate the effects of learning

rate and momentum term on flexible pavement performance pre-

diction. Choi et al. [6] claimed that by using sensitivity analysis

neural network could effectively understand the factors controlling

overall performance indicators. By comparing different abilities

between MEPDG regression and BPNN model on IRI prediction,

Abd El-Hakim et al. [1] claimed that BPNN model yields a higher

prediction accuracy and a lower bias. Recently, Mazari et al. [19]

combined the gene expression programming (GEP) and BPNN, and

found that the hybrid method can effectively predict future IRI.

Multiple-layeredBackPropagationNeuralNetwork.BPNN
with multiple layers offers a number of advantages over the single-

layered ones above. Saghafi et al. [26] found a multi-layered BPNN

structure of 4 layers outperforms traditional method in faulting

prediction. In 2014, Ceylan et al. [4] suggested that the BPNN pre-

dicts the future of pavement condition with satisfactory accuracy

in both short and long term. Then Ziari et al. [33] developed a

3-layered BPNN and the group method of data handling model

(GMDH) for the IRI prediction. Recently, Hossain et al. [16] also

designed a Deep Neural Network model for the prediction of IRI

by using various statistical characteristics on traffic and climate.

However, the proposed models were only tested on a relatively

small dataset, which is summarized in Table 1. In addition, Gong

et al. [12] introduced a deep learning neural network model for

rutting prediction with 3 hidden layers, but the climate time-series

are still used as cross-sectional features. Multiple-layered BPNN

has been used in other fields as well. Covington et al. [7] found that

deep collaborative filtering model was able to effectively assimilate

many signals and modeled their interaction with layers of depth,

outperforming previous matrix factorization approaches used at

YouTube [28] . In [18], Liu et al. discussed myriads of widely-used

deep learning architectures and their practical applications.

Time-series Prediction. For time-series prediction, researchers

have also make thoroughly explorations. In [30], the author pro-

posed Long- and Short-term Time-series network (LSTNet) with

temporal attention layer to address the open challenge of mul-

tivariate time series forecasting. In [27], the author proposed a

new unified model, Grid-Embedding based Multi-task Learning

(GEML), to satisfy the need of predicting the number of passenger

demands from one region to another in advance. To capture tempo-

ral trends of passenger demands, the author designed a Multi-task

Learning network resorting to Long Short-Term Memory Recur-

rent Networks (LSTMs) in order to assist the main task to capture

stronger intrinsic temporal patterns, and the proposed model was

then proved outperforms the baselines. Apart from that, in [5], the

author proposed a new attentional intention-aware recommender

(AIR) systems to predict category-wise future user intention and col-

lectively exploit the rich heterogeneous user interaction behaviors

by extracting sequential patterns from the user-item interaction

data; in [30], the author used point process for modeling event, ar-

guing that the background of many point processes can be treated

as a time series. The author took an RNN perspective to point pro-

cess, and models its background and history effect. In this paper, we

will introduce deep neural network to model time-series features

of pavements.

3 PRELIMINARY
3.1 Problem Definition
Here we give the definition of the IRI prediction problem. Assume

the pavement record set is denoted as R =
{
Rtr ,Rte } , where

Rtr
is used for training and Rte

for testing. Each record r ∈ R is

expressed to be r =
{
p,Xp ,yp

}
, where p denotes the pavement in

the record, Xp denotes the cross-sectional as well as time-series
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Figure 1: Structure of a pavement in Michigan with six lay-
ers.

features of the pavements, andyp represents the value of IRI, which

is the target feature of the prediction model.

Based on the denotations above, we formally define the problem

as below,

Definition 1. (Pavement IRI Prediction) Given a training set
Rtr of pavements, the goal is to learn a model

f : Xp → yp

for each record r ∈ Rtr , and further utilize the model f to make IRI
predictions for records in the test set Rte .

3.2 LTPP Database
The Long-Term Pavement Performance (LTPP) program [23], which

is initiated in 1987, is envisioned as a comprehensive program to

satisfy a wide range of pavement information needs [24]. Currently,

the LTPP acquires the largest road performance database [21, 25].

A large number of pavement performance related researches [1, 6,

8, 16, 17, 19, 20, 31, 33] use the database to organize their datasets.

Overall, there are four kinds of pavement features, namely pave-

ment structure and construction (PSC), climate (CLT), traffic (TRF)

and performance (Per). Table 2 summarizes the descriptions of the

important features from the four kinds above, and please refer to

Section 4 for detailed introduction.

3.3 Pavement Structure
The pavement structure usually consists of 2 to 13 layers, among

which some layers use the same material. Fig. 1 illustrates the

layer structure pattern of a pavement in Michigan. From top to

bottom, first, several asphalt concrete (AC) layers cover on the very

top of the pavement surface, which are denoted by layer 4, 5 and

6. Then portland cement concrete (PC) and treated bound (TB)

base are followed beneath. At the very bottom is the subgrade (SS)

layer (layer 1), which is the base of the whole pavement. In the

Figure 2: The number of IRI records with different pave-
ments in LTPP database. Best viewed in color.

LTPP database, the data of pavement structure is recorded layer-by-

layer. Note that different pavements have different combinations of

layers.

4 DATA ORGANIZATION
We use LTPP database as the data source to create high-quality

datasets for model design. In the following paragraphs, we first

introduce the problems of raw LTPP database for IRI prediction.

Thenwe describe the approaches of extracting high-quality features,

including cross-sectional and time-series ones.

4.1 LTPP Database for IRI prediction
Although LTPP database has been in service for around thirty

years and accumulates a large amount of data, the raw data have

the following problems preventing researchers from modeling IRI

accurately.

Sparse observations. For most pavements, IRIs are only mea-

sured once a year or every two years. Such low frequency of mea-

surement causes the data sparsity problem. Fig. 2 visualizes the

distribution of the number of IRI records among different pave-

ments. In average, each pavement only has about 50 IRI records.

Even for the oldest pavement (e.g., 70 years), the number of IRI data

is still relatively small (e.g., 300 rows). The sparsity problem hinders

previous works [1, 6, 16, 17, 19, 33], which used a few number of

roads, having a good generalization.

Various temporal and cross-sectional data.There are at least
two types of data which influence the IRI of pavements. One is cross-

sectional features, such as traffic, location and structure. The other

is time-series features, like climate. Being observed automatically

by electronic equipment, climate features are recorded more regu-

larly and have fewer data missing than cross-sectional data in LTPP

database [21] . For example, air temperature and precipitation are

collected at every 15 minutes, and these data are accumulated into

hourly, daily, and monthly statistics. Previous studies [1, 16, 17, 33]
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IRI0

IRI

Figure 3: An IRI tendency of pavement 25-1004 in Mas-
sachusetts. The reconstruction events are denoted with dif-
ferent colors. Best viewed in color.

have demonstrated that both features affect the predictions of pave-

ment performance. However, there is no model to reasonably fuse

these two kinds of features for capturing more latent relationships.

Human factors. Human factors are introduced to the IRI ten-

dency by pavement reconstructions. After a reconstruction, IRI

drops obviously due to the pavement surface quality improvement,

and then it will rise gradually with time going on. Fig. 3 illustrates

such trend with pavement 25-1004 in Massachusetts. Furthermore,

the reconstruction operation breaks the whole IRI sequence of a

single pavement into several short series where human factors are

excluded. Therefore, the valid IRI sequences are short and it is hard

to model its time-dependent pattern directly.

Summary. In this paper, to overcome the problems above, we

mix all pavements together to guarantee that we have enough data

for modeling, and develop a feature fusion model based on deep

neural network by utilizing both cross-sectional and time-series

data. In the next two subsections, we describe the detailed data

pre-processes for feature extraction.

4.2 Cross-sectional features
We focus on pavement performance, pavement structure and con-

struction, and traffic to generate useful cross-sectional features.

Table 3 lists the statistics of the cross-sectional features used in this

paper.

Pavement performance. In this work, we only use IRI related

features at the aspect of pavement performance. Due to human fac-

tor, the IRI sequence is short, and we model IRI as a cross-sectional

feature instead of time-series feature. For each IRI observation date,

we extract two IRI values: one is the current IRI value, and the other

is the first IRI measurement in this pavement construction, denoted

by IRI0. Taking the construction=3 of pavement 25-1004 (green line

in Fig. 3) as an example, IRI0 is the first point denoted in the graph,

and one IRI value is the end point of the line. Besides, to ensure

Table 3: Cross-sectional features statistics. N/A is Not Appli-
cable.

Feature Range Average Unit
IRI 0.3460∼4.473 1.478 m/km

IRI0 0.333∼4.447 1.404 m/km

ELE -11∼2331 486.428 m

LAT (abs) 18.33∼62.41 38.905 degree

LONGI (abs) 52.87∼156.67 96.487 degree

AGE 307∼29331 7163.227 days

AADTT 7∼9353 846.295 N/A

AADKESAL 1∼5214 404.768 time

Table 4: Climate features statistics

Feature Range Average Unit
AAT -10.9∼26.6 12.402

◦
C

FI 0.0∼2370.0 326.420
◦
C ∗ days

FT 0∼209 78.709 days

AAMAXT -6.4∼32.6 18.875
◦
C

AAMINT -15.4∼21.7 5.869
◦
C

AMAXT 6.8∼51.6 36.522
◦
C

AMINT -43.8∼18.4 -17.537
◦
C

ADT32 0∼197 40.785 days

ADT0 0∼254 103.898 days

TAP 10.5∼2800.8 840.139 mm

AS 0.0∼4411.0 672.645 time

AIPD 0∼73 19.167 days

AWD 6∼267 127.402 days

that the difference between IRI and IRI0 is influenced by time-series

features for a sufficient long period, the extracted IRI records are

measured at least two years after each pavement reconstruction.

Pavement structure and construction. For structure and con-
struction related features, we use construction number of each

observation to denote which time period the pavement structure

records should be extracted from, i.e., given a pavement, for each

distinct construction number, the dates between the first IRI obser-

vation and the last IRI observation are extracted. Apart from that,

we also need basic pavement features such as the latitude (LAT),

longitude (LONGI), elevation (ELE) and Age, because we use all

pavement data to create the prediction model, and the model needs

the basic features to distinguish each pavement. Consequently, we

extract all pavement location related data as shown in Table 2.

Here pavement age of an IRI observation is the days from the date

pavement opened to the date IRI measured. Lastly, we also extract

features about the pavement layer structure, namely layer number,

layer thickness and layer material. One-hot encode is adopted for

the representation of the structure of the pavements.

Traffic. We extract two types of traffic features as shown in

Table 2, and they are annual equivalent single-axle loads (AADKE-

SAL) and annual average daily truck traffic (AADTT). AADKESAL

represents a converting result of damage from wheel loads of vari-

ous magnitudes and repetitions (“mixed traffic”) to damage from

an equivalent number of “standard” or “equivalent” loads [21], and
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Figure 4: Different time-series features of pavement 26-116
in Michigan

it represents how much the pavement is worn and crushed. Be-

sides, AADTT plays a key role in influencing IRI tendency since

the tremendous weights of the trucks heavily affect the conditions

of the pavement surfaces. For the missing values of AADKESAL

and AADTT, we fill in them with the latest data near the records

considering the traffic of each pavement to be relatively stable.

4.3 Time-series Features
The climate feature is one of the most influential features affect-

ing IRI and we try to capture the latent relationship between IRI

tendency and annual climate changes. Fig. 4 shows the complexity

patterns of AAT, ADT32 and TAP of pavement 26-116 in Michigan.

In this work, we mainly extract annual temperature and pre-

cipitation related features as our time-series features. There are

nine different annual temperature features, and they are AMINT,

AAMINT, AMAXT, AAMAXT, AAT, FT, FI, ADT32 and ADT0. The

annual precipitation includes AWD, TAP, AIPD and AS. Because

the time period between IRI measurement and IRI0 is varying, we

need to create time-series features with varying length. However,

our model (introduced in Section 5) requires fixed-length input.
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Figure 5: The architecture of feature fusion LSTM-BPNN
Model

Therefore, we first extract all climate features for 20 years, ensur-

ing the time is fully covered from the lastest reconstruction to the

IRI measurements in LTPP database. Then we delete climate data

earlier than IRI0 date and use a magic number (e.g., -100) to fill

in the deleted value in climate series. Table 4 lists the statistics of

time-series features used in this paper.

5 FEATURE FUSION LSTM-BPNN MODEL
5.1 Model Specification
Fig. 5 describes the architecture of our feature fusion LSTM-BPNN

model. It mainly consists of two components: 1) the left part in the

figure illustrate a BPNN, which accepts the basic and cross-sectional

features of different pavements as inputs and learns corresponding

hidden representations, and 2) the right part presents a recurrent

neural network for the modeling of annual climate time-series

features with various length. We apply the attention mechanism to

learn time-series features by implicitly fusing the cross-sectional

features. The two components work in a manner of affecting each

other mutually. The final output representation of LSTM-BPNN

concatenates the output of BPNN and LSTM.

BPNNmodel for cross-sectional features.Tomodel the cross-

sectional features of pavements, we apply neural network, BPNN

model, for its high expressivity. In this way, our model will have

better capability to capture important features on pavement itself.

Consider the state of the jth neuron of layer l − 1 to be βl−1j , we

define the following equation:

βlj = relu

(∑
k

wl
jk β

l−1
k + bj

)
, (1)

wherew jk
l
is a weight matrix and bj is a bias vector. In our model,

we set the layer number of BPNN component to be 3, namely

S1, S2, S3. S1 is the input layer of the cross-sectional features. S2
is the hidden layer and S3 is the top layer for the final matrices

concatenating with the output of LSTM component.
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LSTMfor climate time-series features. Long short-termmem-

ory (LSTM) has been successfully applied to model time-series

features [22]. Therefore, we adopt it for encoding the climate time-

series features and better capturing the impacts of climate changes

over time on pavement performance. Actually, LSTM contributes

to the detection of deleterious time intervals in sequences for each

pavement, in whichway the fluctuations can be captured comparing

to the traditional methods which use only statistic characteristics

to represent impacts.

The LSTM part mainly consists of three components: the forget

gate, the input gate and the output gate. Consider the input Xtc at

time tc , the previous hidden layer state htc−1 , and the forget gate

state ftc at time tc , we have:

ftc = siдmoid
(
Wf ·

[
htc−1 ,Xtc + bf

] )
. (2)

Similarly, consider the state of the output gate to be Ctc and the

two middle states C̃tc and itc , we have:

itc = siдmoid
(
Wi ·

[
htc−1 ,Xtc

]
+ bi

)
, (3)

C̃tc = tanh

(
WC ·

[
htc−1 ,Xtc

]
+ bC

)
, (4)

Ctc = ftc ∗Ctc−1 + itc ∗ C̃tc . (5)

Finally, with the output gate state htc−1 , we have:

otc = siдmoid
(
Wo ·

[
htc−1 ,Xtc + bo

] )
, (6)

htc = otc ∗ tanh
(
Ctc

)
, (7)

whereWf ,Wi ,Wo andWC are weight matrices, and bf , bi , bC and

bo are weight vectors.

Masking layer. Considering that the length of time-series fea-

tures with valid values is variable, we add a masking layer before

the input of LSTM component. The masking layer will automati-

cally filter invalid features (e.g., the magic number -100) and process

features with varying length.

Attention-based Feature Fusion. For IRI prediction, it has
been clearly that different climate changes affect the performance

of pavements. In our model, we are seeking to take more details

into consideration. Specifically, we would like to model how the

cross-sectional features of the pavements (e.g., the structure of the

pavement and traffic related features) and the different changes of

climate influence each other. Here we apply attention mechanism,

since it is able to capture more latent relationship [29]. By using

attention method in LSTM-BPNN model, cross-sectional features

affect the weights of the climate features in a year-by-year manner,

and the weight α will be automatically aggravated or reduced by the

learning process. Before introducing the novel attentionmechanism,

we first define S3 and S2 to be the intermediate and top layers’

outputs of the BPNN, respectively, and assume each layer of the

network is associated with nonlinear activation functions (e.g.,

rectified linear unit). Then we propose a novel method to compute

the overall impact of each annual climate at time t as αti with

pavements features being taken into consideration:


αt1
...

αtm

 = f (Wα · tanh (Whht +WsS2 + bα )) , (8)

where Wα , Wh and Ws are weight matrices, ht is the matrix of

hti , and bα is a bias vector. In addition, function f is the output

activation of the attention, andwe can set f to be sigmoid or softmax

interchangeable. With such attention method, the final output is:

Ht =


αt1
...

αtm

 ·
[
ht1 . . . htm

]
. (9)

IRI regression. After getting the output of the two components

to be S3 and Ht respectively, the model computes the final regres-

sion by concatenating Ht and S3 together. Supposing the target is

denoted as ŷp , we define the output of the regression with linear

activation as follows:

ŷp =Wy · [Ht ; S3] + by , (10)

whereWy and by are learnable weight matrices and bias vector

respectively. We define the loss function of LSTM-BPNN model as

the mean square error between the real regression target yp and

the predicated target ŷp .

6 EXPERIMENTS
6.1 Experimental Settings
We implemented our model with Keras library. During the train-

ing, early stopping strategy and Adam optimizer with exponential

learning rate decay are applied. The parameter of decay steps is set

to be 10. For hyperparamters, we use grid search to find the best

settings. Table 5 lists the detailed space of the hyperparameters in

our model.

Table 5: Hyperparameter Space. The bold text indicates the
best parameters.

Hyperparameter value
BPNN hidden layer activation [relu, tanh]
Attention hidden layer activation [tanh, relu]
Attention output layer activation [sigmoid, softmax]

LSTM hidden states 13 [8, 64]

Concatenate layer LSTM neurons 100 [8, 512]

Concatenate layer ANN neurons 300 [8, 512]

Output layer activation linear

Epoch 65 [8, 512]

Batch size 512 [8, 1024]

Learning rate decay steps 10 [5, 20]

Baselines.We choose three traditional regression models which

are Linear Regression (LR) [32], Gradient Boosting Decision Tree

(GBDT), eXtreme Gradient Boosting regression (XGBR), and a pure

BPNN model for comparison. Traditional and neuron network mod-

els are implemented with Sklearn and Keras library, respectively.

Tree based models, namely GBDT and XGBR, are carefully tuned,

and the number of boosted trees are set to be 400. BPNN model has
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Table 6: Evaluation results of only modeling cross-sectional
features.

Model R2 RMSE
LR 0.735 0.352

GBDT 0.758 0.336

XGBR 0.767 0.328

BPNN 0.769 0.322

Table 7: Evaluation results of modeling on time-series fea-
tures and IRI0.

Model R2 RMSE
LR (Agg.) 0.732 0.352

LSTM 0.768 0.335

GBDT (Agg.) 0.770 0.327

XGBR (Agg.) 0.771 0.321

1 hidden layer. The batch size and training epoch are set to be 128

and 512, and the output layer of BPNN is linear for regression.

Dataset. We validated our new prediction model using a real-

world dataset from LTPP. According to the data organization in-

troduced in Section 4, we obtain a dataset which contains 2243

records and covers 1406 pavements in north America. The size of

our dataset is much larger than the ones in previous works. Besides,

because different pavements have different layer structure, the fea-

tures of the pavement structure are sparse, and we use PCA [9] to

reduce the dimensions. Specifically, the features of the pavement

structure are reduced to 5 dimensions.

Metrics. The evaluation metrics adopted in the experiments are

mean square error (RMSE) and coefficient of determination (R2),
which are commonly used in regression tasks. The formulas of the

metrics are shown below

R2 = 1 −

∑
(yi − fi )

2∑ (
yi −

1

n
∑n
i=1 yi

)
2
, (11)

RMSE =

√∑n
i=1 (yi − fi )

2

n
, (12)

where yi and fi denote the real and predicted value, respectively.

Furthermore, we ran each model in 5-fold cross-validation manner,

and reported the average performance.

6.2 The Influence of Cross-Sectional Features
To demonstrate the effectiveness of cross-sectional features for IRI

prediction, we first tested different models by only using the cross-

sectional features. Note that in this experiment, time-series features

are not considered, therefore, we only use the BPNN component in

LSTM-BPNN model for comparison. Table 6 shows the results of

predictions. All models achieve an R2 greater than 0.7, indicating

the effectiveness of all chosen models. The worst comes from the

LR model, which is 0.735. The best performance comes from BPNN

regression model, which is 0.769, indicating that neural network

has a strong ability for capturing non-linear and complex latent

information.

Table 8: Evaluation results of modeling all features.

Model R2 RMSE
LR (All) 0.738 0.350

BPNN (All) 0.774 0.353

GBDT (All) 0.781 0.320

XGBR (All) 0.789 0.316

LSTM-BPNN (Softmax) 0.855 0.258
LSTM-BPNN (Sigmoid) 0.867 0.242

6.3 The Influence of Time-series Features
We also conducted experiments to showcase the effectiveness of

time-series features. First in this experiment, we also preserve one

cross-sectional feature IRI0 for model training. The reason is that

the IRI value is highly related to IRI0. From Table 3, it is easy to

figure out that the range of IRI and IRI0 are close, which implies

the absolute values of IRI and IRI0 with the same construction

number are close. Second, the traditional models cannot process

the raw time-series features directly, we compute the aggregated

statistics (e.g., average and variance) of each time-series feature

instead. These models are denoted with “(Agg.)” suffix. For LSTM-

BPNN model, we use only IRI0 for the input of BPNN component

and time-series features for the input of LSTM component. As

shown in Table 7, among models using the aggregated features

of time-series climate features, LR model gives the worst result of

R2 0.732, while XGBR achieves the best and the R2 is 0.771. Note
that LSTM obtains an R2 of 0.768, which is close to the best one.

This implies that directly modeling the time-series features with

sequential neural network is a comparative solution.

6.4 The Performance of LSTM-BPNN model
Finally, we compared LSTM-BPNN model with the alternatives us-

ing all cross-sectional features and the time series for IRI prediction.

Table 8 shows the results. First, more key features clearly improve

the prediction accuracy of these models. Among the baselines, the

worst performance of 0.738 comes from LR. The best performance

comes from XGBR model, which is 0.789. Our LSTM-BPNN model

achieves R2 to be 0.867, which is far better than XGBR model, and

also obtains the lowest RMSE to be 0.242. It is also a great improve-

ment of our model comparing to BPNN. Fig. 6 visualizes all the

regression results of the six models above, and from the figure,

we can also find that LSTM-BPNN achieves better performance of

regression compared to other baselines. These experimental results

demonstrate that the LSTM model effectively captures the latent

relationship between different kinds of climate changes and IRI

tendency via the attention mechanism from BPNN, demonstrat-

ing that when time-series features is properly taken advantage of,

more latent information can be extracted by the model, and finally

contributes to more accurate predictions of future IRI.

Attention Activation: Sigmoid vs. Softmax. We also com-

pared our model by setting the attention output activation to be

sigmoid and softmax, respectively. As shown in Table 8 and Fig. 6,

sigmoid activation gives better performance than softmax. A rea-

sonable explanation is that the impact of annual climate change

for pavements is independent every year, which means how the
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(a) LR performance (b) BPNN performance (c) GBDT performance

(d) XGBR performance (e) LSTM-BPNN (softmax) performance (f) LSTM-BPNN (sigmoid) performance

Figure 6: The regression results of six models with all features.

IRI will be influenced in the future has nothing to do with how

it was influenced before, and vice versa. As a consequence, it is

better to compute each attention weight αt i individually without

normalization. In other words, sigmoid activation is more suitable

for the IRI prediction under time-series attention circumstances.

7 CONCLUSION
IRI prediction is a core task for a pavement management system. In

this paper, we proposed a deep learning model for the task, named

LSTM-BPNN. The new model first applies BPNN and LSTM to en-

code cross-sectional and time-series features respectively, and then

uses an attention mechanism to capture the latent relationships

between them. We also organized a high-quality and large dataset

for the pavement IRI prediction from LTPP database. The experi-

mental results on the dataset clearly demonstrate the effectiveness

of the LSTM-BPNN for IRI prediction. Besides IRI, there are many

other pavement performance indicators, like rutting, cracking, fault-

ing, etc. In the future, we will extend our model to predict these

indicators.
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