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ABSTRACT
Graph Neural Networks (GNNs) are playing increasingly important

roles in critical decision-making scenarios due to their exceptional

performance and end-to-end design. However, concerns have been

raised that GNNs could make biased decisions against underprivi-

leged groups or individuals. To remedy this issue, researchers have

proposed various fairness notions including individual fairness that

gives similar predictions to similar individuals. However, existing

methods in individual fairness rely on Lipschitz condition: they only

optimize overall individual fairness and disregard equality of indi-

vidual fairness between groups. This leads to drastically different

levels of individual fairness among groups. We tackle this problem

by proposing a novel GNN framework GUIDE to achieve group

equality informed individual fairness in GNNs. We aim to not only

achieve individual fairness but also equalize the levels of individual

fairness among groups. Specifically, our framework operates on

the similarity matrix of individuals to learn personalized attention

to achieve individual fairness without group level disparity. Com-

prehensive experiments on real-world datasets demonstrate that

GUIDE obtains good balance of group equality informed individ-

ual fairness and model utility. The open-source implementation of

GUIDE can be found here: https://github.com/mikesong724/GUIDE.
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1 INTRODUCTION
Graph data is ubiquitous across a number of high-impact domains,

e.g., social networks [23], user-product graphs [29], and knowl-

edge graphs [15], etc. In fact, graphs provide a useful abstraction

to describe data and their inherent relations. To effectively gain

deeper understanding from graph data, various algorithms have

been proposed to tackle different graph mining tasks, including

prediction [14], community detection [2], recommendation [11],

and many more. Among them, Graph Neural Networks (GNNs)

have attracted a surge of research interests in recent years due

to their superior learning performances [12, 18, 24]. They are in-

creasingly adopted in various tasks such as anomaly detection [26],

social network recommendation [28], and graph classification [27].

Although GNNs have excelled in a diverse set of tasks, concerns

have been raised that directly adopting GNNs could empirically

result in ethical and fairness issues [1, 4, 6], such as racial or gender

discrimination, which renders the adoption of GNNs in high-stake

scenarios questionable. Generally, to analyze algorithmic fairness,

researchers have developed multiple fairness notions [21], such as

group fairness [13], which ensures equal outcome rates for mem-

bers of different demographic subgroups; and individual fairness [9],

which promotes treating similar individuals similarly. While group

fairness has been widely studied in many works [19, 22], individual

fairness still remains under-explored. Nevertheless, considering

that individual fairness is able to enforce fairness at a finer gran-

ularity at the individual level compared to group fairness, it is a

desirable notion of fairness to enforce in GNNs.

To model individual fairness in graphs, Lipschitz condition is the

most commonly adopted mathematical foundation among existing

works [9, 16, 20]. Specifically, for any pair of individuals (𝑣𝑖 , 𝑣 𝑗 ),
there is a constraining scalar 𝜖𝑖, 𝑗 such that the output distance

between 𝑣𝑖 and 𝑣 𝑗 is bounded by their input distance multiplied

by this scalar. Here, the input distance between individuals could

be given by domain experts or oracle similarity matrix [5, 16]. The

largest constraining scalar across all pairs is named as the Lipschitz

constant. Intuitively, if the Lipschitz constant is small, then the

outcome distance is also constrained to be small for similar pairs (i.e.,

pairs with small input distances) in the dataset. This implies that

similar people are treated similarly. To enforce individual fairness,

a commonly adopted approach
1
in existing works [16, 20] is to

1
Existing works use this loss form to optimize individual fairness: L =∑
𝑣𝑖 ∈V

∑
𝑣𝑗 ∈V ∥Z[𝑖, :] − Z[ 𝑗, :] ∥2

2
S[𝑖, 𝑗 ] and L ≤ 𝑚𝜖 , where V is the set of indi-

viduals, Z is the model output matrix, S is the pairwise similarity matrix of individuals

in V ,𝑚 is the number of pairwise comparisons, 𝜖 is the average constraining scalar.

https://github.com/mikesong724/GUIDE
https://doi.org/10.1145/3534678.3539346
https://doi.org/10.1145/3534678.3539346
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Figure 1: Average constraining scalar optimization based on
PFR and InFoRM. Percentages denote the optimization re-
sults compared with vanilla values. Group disparity is exac-
erbated because the White group receives better optimiza-
tion results compared with the group of African American.

minimize the sum of output distance divided by input distance

(or multiplied by similarity) for all pairs of individuals. Intuitively,

this sum is bounded by the average constraining scalar 𝜖 (for all

pairs of individuals in the dataset) times the total number of pairs

𝑚. Therefore, as this sum is minimized, the average constraining

scalar 𝜖 is also minimized. Such technique has been empirically

proved effective in forcing the Lipschitz constant to be as small as

possible. However, for different individual pairs in the population,

the optimization of the constraining scalar could be potentially

influenced by the sensitive attributes of the involved individuals

such as gender or race. For example, the optimization result of some

privileged demographic subgroups could be significantly better

than that of the disadvantaged groups. We empirically show the

presence of such phenomenon in existing works below.

PFR [20] and InFoRM [16] are two representative works that opti-

mize individual fairness in graphs. The effectiveness of these two ap-

proaches for the optimization of the average constraining scalar be-

tween the outcome and input distance for individual pairs has been

empirically proved. Nevertheless, sensitive attributes (e.g., race)

could severely affect the optimization results in both approaches.

For example, empirical explorations are shown in Fig. 1, where PFR

and InFoRM are adapted to GNNs for node classification task on In-

come dataset [8]. Generally, the overall average constraining scalar

is optimized towards a smaller value, which indicates a smaller

Lipschitz constant. However, such optimization effectiveness is

largely attributed to the optimization of the constraining scalars for

pairs that involve white individuals. For pairs that involve African

Americans, they do not enjoy as much optimization in InFoRM, and

their situation is even worse after the optimization of PFR.

It is worth mentioning that the group disparity of individual

fairness optimization discussed above could lead to discrimination

in real-world decision-making scenarios. Here we utilize an illus-

trative toy example in Fig. 2 to scrutinize how such group disparity

leads to discrimination. Assume that two races (group W for white

and group B for black) are involved in a loan approval system. Given

the input distance matrix for individual pairs (i.e., the matrix in Fig.

2(a)), assume that the outcome distance (i.e., distance in the matrix

of Fig. 2(b)) is already optimized through an existing individual fair-

ness enforcing approach. In this example, the average constraining

scalar for individual pairs involving members of group W (blue

entries) is at a significantly lower level compared with that of group

B (orange entries), i.e., 𝜖𝑊 < 𝜖𝐵 . Assume that there are a black (𝑣6)
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Figure 2: A toy example on the disparity of individual fair-
ness between different groups in a loan approval system.
Since existing individual fairness approaches do not enforce
equal average constraining scalars between groups, it is pos-
sible that Group B has a larger average constraining scalar
than Group W. Then, when comparing to an individual 𝑣5
who is already approved the loan, a member 𝑣6 from Group
B could have a larger outcome distance than a member 𝑣2
from Group W (90 vs. 20) even though their input distances
to 𝑣5 are equal (both are 3). This difference in outcomes could
place 𝑣6 across the decision boundary, giving him rejection
when he is equally similar to 𝑣5 compared to 𝑣2.

and a white (𝑣2) individual who have equal input distance of 3 com-

pared to a third individual 𝑣5 who is already approved for the loan.

Since the input distances of (𝑣2, 𝑣5) and (𝑣6, 𝑣5) are small, both pairs

should be considered as similar pairs, and thus they should receive

similar outcomes in the loan approval system. However, since exist-

ing individual fairness promotion approaches do not enforce equal

average constraining scalars between groups, Group B could have

a higher average constraining scalar than Group W. As a result, it

is possible that the black individual 𝑣6 has larger outcome distance

to 𝑣5 than the white individual 𝑣2 has (90 vs 20), even though they

have the same input distances of 3 to 𝑣5. A larger outcome distance

could potentially put the black individual 𝑣6 on the other side of

the decision boundary in the loan approval system, giving him a

different outcome for his loan application.

To properly handle the problems we mentioned above, in this pa-

per, we study a novel problem of enforcing group equality informed

individual fairness. Specifically, we first design a metric to capture

the disparity of individual fairness in groups. Then a novel GNN

framework named GUIDE (Group eqUality Informed indiviDual

fairnEss) is proposed to achieve not only overall individual fairness

but also similar levels of individual fairness between groups, and

moreover maintain the utility of the prediction model. In GUIDE,

there are a backbone GNN learning from node adjacency matrix

and node feature matrix to extract informative node embeddings

for downstream tasks, and an attention-based GNN learning from

the node similarity matrix and node embeddings to produce the

final outputs that achieve our aforementioned objectives. Our main

contributions can be summarized as:

• Problem Formulation.We propose a novel metric to quan-

titatively measure the group disparity of individual fairness.

Based on the proposed metric, we formulate a novel problem

of promoting group equality informed individual fairness in

Graph Neural Networks.
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Table 1: Symbols.
Symbols Definitions
G input graph

V set of all nodes in a graph

V𝑝 𝑝𝑡ℎ group

𝑛 total number of nodes

𝑑 total number of features

𝑚 total number of nonzero similarities in S
𝑚𝑝 nonzero similarities for members inV𝑝
𝜖 overall average constraining scalar

𝜖𝑝 average constraining scalar forV𝑝
A ∈ {0, 1}𝑛×𝑛 adjacency matrix of graph G
X ∈ R𝑛×𝑑 node features matrix of graph G
Z ∈ R𝑛×𝑐 graph learning output matrix

S ∈ R𝑛×𝑛 pairwise similarity matrix

L ∈ R𝑛×𝑛 Laplacian of similarity matrix

• Algorithm Design.We propose a novel framework GUIDE

to relieve the disparity of individual fairness in different

groups, optimize overall individual fairness while preserving

prediction performance in downstream task.

• Experimental Evaluation.We conduct comprehensive ex-

periments on multiple real-world datasets and experimental

results validate the superiority of our proposed framework.

2 PROBLEM FORMULATION
In this section, we introduce notations and preliminaries on exist-

ing individual fairness approaches on graph learning. Finally, we

formulate our research problem.

2.1 Notations
In this paper, we use bold uppercase characters (e.g.,A) for matrices,

bold lowercase characters (e.g., a) for vectors, lowercase characters
(e.g., 𝑎) for scalars, uppercase caligraphic characters (e.g., V) for

sets. Also, we represent the 𝑖-th row, 𝑗-th column, (𝑖, 𝑗)-th entry of a
matrixA asA[𝑖, :],A[:, 𝑗] andA[𝑖, 𝑗], respectively. Additionally, we
use lowercase bold vectors with index to represent the row vector

of a matrix (e.g., z𝑖 = Z[𝑖, :]). The trace of matrix A is Tr(A). The
ℓ2-norm of a vector a ∈ R𝑑 is ∥a∥

2
=
√
aTa. A graph G = (V, E,X)

consists of (1) V: set of nodes ( |V| = 𝑛), (2) E ∈ V × V: set

of edges, and (3) X ∈ R𝑛×𝑑 : node attributes where x𝑖 ∈ R𝑑 is

the attribute vector for 𝑖-th node. We assume there is a sensitive

attribute set T containing sensitive attributes for each individual

and T yields𝐺 disjoint groups inV . We useV𝑝 to denote the set of
individuals in group 𝑝 . We use A ∈ {0, 1}𝑛×𝑛 , X ∈ R𝑛×𝑑 for graph

adjacency matrix and node feature matrix, respectively. We also

assume there is a similarity matrix S which contains pairwise node

similarities according to domain knowledge or human judgement.

It is worth noting that S may not be equal to A. The Laplacian L of

the similarity matrix S is derived by subtracting S from the diagonal

degree matrix of S. Symbols are summarized in Table 1.

2.2 Preliminaries
In this subsection, we first introduce the Lipschitz condition, which

is commonly utilized to formulate an objective function to optimize

individual fairness in existing works [16, 20]. We present Lipschitz

condition in Definition 1 below.

Definition 1. Lipschitz condition is satisfied if

𝐷1 (𝑓 (𝑣𝑖 ), 𝑓 (𝑣 𝑗 )) ≤ 𝐿.𝐷2 (𝑣𝑖 , 𝑣 𝑗 ),∀𝑣𝑖 , 𝑣 𝑗 ∈ V (1)

where 𝑣𝑖 and 𝑣 𝑗 are two instances (nodes specifically in our case),
𝐷1 (., .) and 𝐷2 (., .) are distance metrics for outputs and inputs re-
spectively, 𝑓 (·) is a function, and 𝐿 > 0 is the Lipschitz constant.

Existingworks that promote individual fairness in graph learning

are commonly based on Lipschitz condition. The intuition is that

individual pairs with higher similarity should be constrained to

achieve smaller output distance. To achieve such property, the loss

function in existing works is usually formulated as below:

L
ifair

=

∑
𝑣𝑖 ∈V

∑
𝑣𝑗 ∈V ∥Z[𝑖, :] − Z[ 𝑗, :] ∥2

2
S[𝑖, 𝑗]

2

= Tr(Z𝑇 LZ) ,
(2)

and this loss satisfies

2L
ifair

≤ 𝑚𝜖 , (3)

where 𝜖 is the average constraining scalar for outcome distance

given their similarities for all individual pairs, 𝑚 is the number

of nonzero elements in S, Z is the graph learning output matrix

(e.g., node embeddings for GNNs), S is the pairwise node similarity

matrix, and L is the Laplacian of S. Intuitively, the average con-

straining scalar 𝜖 is minimized accordingly as L
ifair

is minimized.

As such, similar individuals will receive smaller output distances

on average, hence the overall individaul fairness level is improved.

Note this loss is a relaxed form of Lipschitz condition (𝜖 as the

average constraining scalar instead of Lipschitz constant 𝐿 as the

absolute constraining scalar for all pairs), where 𝐷1 (𝑓 (𝑣𝑖 ), 𝑓 (𝑣 𝑗 ))
is ∥Z[𝑖, :] − Z[ 𝑗, :] ∥2

2
and 𝐷2 (𝑣𝑖 , 𝑣 𝑗 ) is 1

S[𝑖, 𝑗 ] .
As discussed in Section 1, minimizing L

ifair
according to Eq. (2)

only minimizes the average constraining scalar for all pairs of indi-

viduals. Nevertheless, the problem of how to reduce the disparity

of the constraining scalars across different groups is ignored. As a

result, when only L
ifair

is minimized, one group can have dramati-

cally lower constraining scalar (i.e., much higher level of individual

fairness
2
) than the other group. Here we aim to properly handle

such undesired fairness disparity between groups. In other words,

we aim to achieve balanced levels of individual fairness across

different groups. Specifically, let the level of individual fairness

for a group V𝑝 be 𝑈𝑝 , we can formally define Group Equality of
Individual Fairness as

Definition 2. Group Equality Informed Individual Fairness is
satisfied if the levels of individual unfairness for all groups are equal,
i.e. for G disjoint groups inV (

⋃𝐺
𝑖=1V𝑖 = V),𝑈1 = 𝑈2 = ... = 𝑈𝐺 .

However, it would be difficult to achieve Group Equality of Indi-
vidual Fairness in application scenarios. In this regard, a straight-

forward alternative goal is to satisfy it as much as possible. More

specifically, when overall individual fairness level is maximized and

the difference of individual fairness level across different groups is

minimized, we deem that group equality informed individual fair-
ness is achieved. Following such intuition, we formally formulate

our research problem as follows.

2
We associate high level of individual fairness with low level of individual unfairness

in this paper.
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Problem 1. Promoting Group Equality Informed Individ-
ual Fairness in GNNs. Given a graph G = (V, E,X), ground truth
labels Y for a given prediction task3, a symmetric similarity matrix S
for nodes inV ,𝐺 disjoint groups classified by sensitive attributes (i.e.,⋃𝐺
𝑖=1V𝑖 = V), our goal is to learn an output Z (e.g., node embed-

dings) satisfying: (1) overall individual fairness level is maximized;
(2) difference of the individual fairness level between different groups
is minimized.

To properly handle Problem 1, it is necessary to quantitatively

measure both the overall individual fairness level and the differ-

ence of the individual fairness level between groups. Generally, the

overall individual fairness level can be measured by metrics such as

Eq. (2) [16]. In the following section, we define a metric to measure

the difference of individual fairness level in different groups.

3 MEASURING GROUP DISPARITY
In this section, we develop ametric which can be utilized to measure

the level of individual unfairness in one demographic subgroup. Sub-

sequently, based on this group-level individual unfairness metric,

we formally define a metric to quantify the disparity of individual

unfairness between groups.

3.1 Individual Unfairness of a Group
We first describe the criterion of individual fairness for a group.

The intuition of individual fairness is that individual pairs with

higher similarity should be constrained with smaller output dis-

tance. Existing works evaluate this on all pairwise comparisons of

individuals from the entire populationV , i.e. fromV×V . Then, to

determine if a group V𝑝 has individual fairness, we could evaluate

the pairwise comparisons of individuals from this group against

the entire population, i.e., fromV𝑝 ×V . The intuition is that when

deciding for a group whether its members are treated fairly with

respect to individual fairness, we should evaluate both intra-group

and inter-group pairwise comparisons for completeness. Then, we

can define a metric to quantitatively measure the level of individual

(un)fairness for one group. In a similar fashion as Eq. (2), we define

a group-level average constraining scalar 𝜖𝑝 for pairwise compar-

isons between members ofV𝑝 and all individuals inV . Specifically,

following Eq. (2), for a group V𝑝 ⊆ V , we define a metric 𝑈𝑝 to

measure its group level of individual unfairness.

𝑈𝑝 =

∑
𝑣𝑖 ∈V𝑝

∑
𝑣𝑗 ∈V ∥Z[𝑖, :] − Z[ 𝑗 :] ∥2

2
S[𝑖, 𝑗]

𝑚𝑝
≤ 𝜖𝑝 , (4)

where𝑚𝑝 is the number of nonzero pairwise similarities for mem-

bers ofV𝑝 against all individuals inV , and 𝜖𝑝 is the average con-

straining scalar for group V𝑝 . After introducing the metric for

group-level individual fairness, we define a metric for measuring

the group disparity of individual fairness in next subsection.

3.2 Group Disparity of Individual Fairness
In this subsection, we introduce a metric to measure differences of

individual unfairness between groups based on the metric proposed

above. We name it as Group Disparity of Individual fairness (GDIF).

3
Without loss of generality, we take the widely studied node classification task as the

downstream task in this paper.

It should be noted that Group Equality of Individual Fairness
could be hard to achieve in application scenarios. Thus, to tackle

Problem 1, we develop a quantitative metric for the disparity of

individual fairness for different groups. Note𝑈𝑝 represents the level
of individual unfairness of group V𝑝 . It is calculated by taking the

average of pairwise constraining scalars (output distance divided

by input distance or multiplied by similarity) for people in group

V𝑝 and people in the total population V . If it is different between

two groups V𝑝 and V𝑞 and let𝑈𝑝 < 𝑈𝑞 , then people from V𝑝 will

on average have smaller output distances when they are compared

to similar individuals than people fromV𝑞 have. The larger output

distances for people from groupV𝑞 against their similar counter-

parts could potentially negatively affect them as illustrated in Fig. 2.

Thus, the level of individual fairness should be equal for all groups

such that there are no preferential outcomes for any group. To

quantify such disparity between groups, we first define a metric

below to measure the GDIF between two groupsV𝑝 andV𝑞 :

𝐺𝐷𝐼𝐹𝑝,𝑞 =𝑚𝑎𝑥

(
𝑈𝑝

𝑈𝑞
,
𝑈𝑞

𝑈𝑝

)
. (5)

Here 𝐺𝐷𝐼𝐹𝑝,𝑞 ≥ 1. For two groups, 𝐺𝐷𝐼𝐹𝑝,𝑞 = 1 means they are

with equal level of individual fairness. Then, we can extend the

group disparity of individual fairness for all groups as the sum of

pairwise 𝐺𝐷𝐼𝐹𝑝,𝑞 for all combinations of pairwise groups,

𝐺𝐷𝐼𝐹 =

1≤𝑝<𝑞≤𝐺∑
𝑝,𝑞

𝐺𝐷𝐼𝐹𝑝,𝑞, (6)

where𝐺 is the total number of groups. After defining quantifiable

metrics for group disparity of individual fairness, we introduce our

framework to tackle Problem 1 in next section.

4 PROPOSED FRAMEWORK
In this section, we propose a novel GNN framework—GUIDE to

solve Problem 1. Specifically, we first give an overview of the pro-

posed framework GUIDE. We then present the detailed operations

of GUIDE. Finally, we introduce the optimization objectives of

GUIDE to tackle Problem 1.

4.1 Framework Overview
The overview of our proposed framework is presented in Fig 3.

First, informative node embeddings are initialized with a backbone

GNN to benefit the node classification task. Then, for each node,

since its neighbors on the similarity matrix could (1) have different

similarities compared to this node and (2) have different group

memberships, its neighbors could have different influences on the

GDIF metric through influencing the output of this node. Thus, to

better capture the neighbor-specific information, we propose to

learn personalized weights for each node with respect to its neigh-

bors on the similarity matrix. The attention mechanism can enable

the framework to learn such personalized aggregation weights

given the node features and pairwise similarity values. Next, the

embeddings are aggregated for similar individual pairs with the

learned attention weights to derive final outputs. The final outputs

for nodes should satisfy group equality informed individual fairness

as much as possible while maintaining node classification utility

performance. In next subsection, we introduce more in details.
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Figure 3: The overall framework of GUIDE.

4.2 Workflow of The Proposed Framework
The proposed framework generally needs to seek for a balance

between three different objectives: (1) maximize model utility for

the node classification task, (2) maximize overall individual fairness

level, and (3) minimize GDIF. We discuss how we improve the

our framework’s performances on these three objectives in model

workflow below through two main steps.

4.2.1 Achieving the Goal of Utility. First, to improve utility perfor-

mance on the node classification task, we learn informative node

embeddings with the graph adjacency matrix A and the node fea-

ture matrix X as inputs to a backbone GNN model. To ensure the

embeddings encode critical information for the node classification

task, we utilize the cross-entropy loss as the objective function dur-

ing training. We extract the hidden layer representation H ∈ R𝑛×ℎ
from this GNN backbone as node embedding inputs for the aggre-

gation operation in the next step.

4.2.2 Achieving the Goal of Fairness. Our fairness objectives are
two-fold: maximizing overall individual fairness across the whole

population and minimizing group disparity of individual fairness

across different groups. To maximize the overall individual fairness,

similar individuals should have similar outputs. To better capture

the pairwise similarity information, we use a GNN to aggregate

node embeddings based on the similarity matrix. In other words,

we use the node similarity matrix S as a weighted input adjacency

matrix and node embeddings H as the input feature matrix in a

GNN to performmessage passing. In this way, we can better capture

the pairwise similarity values and encourage similar individuals to

have similar outputs to improve overall individual fairness.

To minimize GDIF across different groups, as we mentioned in

section 4.1, the neighbors of each node on the similarity matrix

could (1) have different similarities compared to this node and (2)

have different group memberships. Thus, these neighbors could

have different influences on the GDIF metric. This effect indicates

that in this GNN, we should learn personalized aggregation weights

for each node and its neighbors to better capture the neighbor-

specific information. However, the aggregation weights in many

GNN frameworks are fixed weights [18, 30, 31] and cannot capture

the different influences from neighbors. Such limitation could po-

tentially affect our ability to achieve the optimal performances of

the fairness objectives. Thus, to promote group equality informed

individual fairness with fine-granularity, we adopt the attention

mechanism in GAT [25] to learn personalized attention weights for

each node and its neighbors. Specifically, we treat the similarity

values as base values for learning aggregation weights so the sim-

ilarity of output representations are more aligned with the input

node similarities, which implicitly improves individual fairness.

The pairwise aggregation weights are computed as follows:

𝜆𝑖, 𝑗 =
exp(𝜙 (a𝑇 [Wh𝑖 | |Wh𝑗 ])S[𝑖, 𝑗])

Σ 𝑗 ∈N𝑖
exp(𝜙 (a𝑇 [Wh𝑖 | |Wh𝑗 ])S[𝑖, 𝑗])

, (7)

where 𝜆𝑖, 𝑗 is the attention from node 𝑖 to node 𝑗 , W ∈ R𝑐×ℎ is the

weight matrix, a ∈ R2𝑐 is the attention weight vector, h𝑖 ∈ Rℎ is the
input embedding of node 𝑖 , [·| |·] is concatenation of two vectors,

N𝑖 is the neighborhood set of node 𝑖 , and 𝜙 is an activation function.

And the operation for node aggregation is

z𝑖 = 𝜎 (Σ 𝑗 ∈N𝑖
𝜆𝑖, 𝑗Wh𝑗 ), (8)

where z𝑖 ∈ R𝑐 is the output embedding of node 𝑖 and 𝜎 is an

activation function. The attentionweights are learned by optimizing

the total objective function which we introduce in next subsection.

4.3 Objective Function Formulation
In this subsection, we summarize the loss functions for each op-

timization objective and present the total objective function for

optimizing our framework. First, to maintain the utility of the GNN

model (i.e., to achieve accurate node classification accuracy), we

adopt the previously mentioned cross entropy loss as the first objec-

tive function term, which is widely adopted in node classification

tasks. Specifically, it is formulated as:

L
util

= − 1

𝑛

𝑛∑
𝑖=1

𝐾∑
𝑗=1

Y𝑖 𝑗 log Ŷ𝑖 𝑗 , (9)

where Y𝑖 𝑗 indicates the true label (in 𝐾 class) of 𝑖𝑡ℎ node and Ŷ𝑖 𝑗 is
the prediction of 𝑖𝑡ℎ node. Second, we utilize L

ifair
for individual

fairness optimization. As we introduced in section 2.2, this loss

function is the sum of pairwise output distances multiplied by

pairwise similarities for all individuals. Minimizing it will improve

the overall individual fairness in the framework. Third, we define a

loss function L
ifg

for the GDIF objective in order to promote group

equality of individual fairness. Specifically, we aim to equalize

levels of individual unfairness for all groups. To do so, we define a

differentiable loss with pairwise𝑈𝑝 and𝑈𝑞 for minimizing GDIF:

L
ifg

=

1≤𝑝<𝑞≤𝐺∑
𝑝,𝑞

(
𝑈𝑝

𝑈𝑞
− 1

)
2

+
(
𝑈𝑞

𝑈𝑝
− 1

)
2

, (10)

where𝑈𝑝 and𝑈𝑞 are individual unfairness for groupV𝑝 and group

V𝑞 respectively. Each group’s individual unfairness is computed

with the aggregated embeddings Z according to Eq. (4). Note that

this loss function is symmetrical to any given two groups such that

it is the same regardless of the order.

In summary, there are three objectives in total for the optimiza-

tion of GUIDE: utility objective from Eq. (9), overall individual

fairness from Eq. (2) and group equality informed individual fair-

ness from Eq. (10). The total loss function is a weighted sum of

losses of each objective, weighted by hyperparameters 𝛼 and 𝛽 :

L
total

= L
util

+ 𝛼L
ifair

+ 𝛽L
ifg
. (11)
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Table 2: Statistics of the used datasets.
Dataset Credit Income Pokec-n
# of nodes 30, 000 14, 821 66, 569

# of node attributes 13 14 266

# of edges in A 304, 754 100, 483 1, 100, 663

# of edges in S 1, 687, 444 1, 997, 641 32, 837, 463

Group ratio 11.2 3.16 21.0

Group avg degree ratio 12.6 2.8 58.8

Sensitive Attribute age race age

To summarize the GUIDE framework, a backbone GNN utilizes

the adjacency matrix A and feature matrix X to initialize node em-

beddings H. Then, the embeddings are passed into a GNN layer

operating on the similarity matrix S to learn individually person-

alized attention weights for node aggregation given the total ob-

jective function. The total objective function encompasses three

loss functions corresponding to the three objectives in Problem 1:

(1) utility maximization, (2) individual fairness maximization over

the whole population, and (3) group disparity of individual fairness

minimization for all groups in the population.

5 EXPERIMENTS
In this section, we conduct extensive experiments on real-world

datasets to validate the effectiveness of GUIDE. Specifically, we aim

to answer the following research questions:

• RQ1: How well can GUIDE balance utility, individual fair-

ness, and group equality of individual fairness objectives

compared to baselines?

• RQ2:Howwell does the attentionmechanism help us achieve

optimization of the fairness objectives: (1) minimizing overall

individual unfairness and (2) minimizing GDIF?

5.1 Datasets
We employ three different real-world network datasets from differ-

ent application domains: Credit, Income, and Pokec-n.We introduce

the details about the three datasets as below.

Credit: The Credit graph dataset is constructed on 30,000 individ-

uals. They are connected based on features such as spending and

payment habits [32]. Our goal is to predict if an individual will

default on credit card payment and the sensitive attribute is age.

Income: The Income graph dataset is constructed on 14,821 indi-

viduals who are sampled from the Adult Data Set [8]. The sensitive
attribute used here is race and individuals are connected based

on their features. The prediction task is to determine if a person’s

income is over $50K a year or not.

Pokec-n: Pokec-n is a sampled dataset from Slovakia’s most popu-

lar social network [23]. The dataset contains 66,569 individuals and

they are connected by friend relationships. Here, we treat age as

the sensitive attribute and our goal is to predict the working field

of users in this social network.

5.2 Experimental Settings
Metrics. We use the row-wise cosine similarity of the adjacency

matrix A to instantiate the similarity matrix S, i.e., the (𝑖 , 𝑗 )-th en-

try in S represents the cosine similarity between the 𝑖-th row and

the 𝑗-th row of the adjacency matrix A. This is aligned with the

similarity metric on individual fairness in existing works [16]. The

utility performance (i.e., node classification accuracy) of GUIDE

on node classification task is evaluated with the widely adopted

metric AUCROC (AUC). Additionally, we also evaluate the perfor-

mance of GUIDE on individual fairness metrics: overall individual

(un)fairness (IF) [16, 20] and the proposed group disparity of indi-

vidual fairness (GDIF).

GNN backbones. All baselines and GUIDE can use arbitrary GNN

backbones. In order to present extensive comparison, we conduct

experiments on three different GNN backbones: GCN [18], GIN [30],

and JumpingKnowledge [31]. All experiments are performed five

times and the average results are reported along with the standard

deviation. The experiment results are shown in Table 3.

Baselines. To validate the effectiveness of the proposed framework,

we conduct experiments based on the following baseline models:

• FairGNN [4] uses adversarial learning such that GNNsmake

fair node classifications that satisfy group fairness. We di-

rectly apply it to various GNN backbones and analyze if it

optimizes our defined GDIF.

• NIFTY [1] optimizes counterfactual fairness and stability by

perturbing attributes, using Lipschitz constant to normalize

layer weights and training with contrastive learning. We

directly adopt it for various GNN backbones.

• PFR [20] learns fair node embeddings as preprocessing step

satisfying individual fairness in downstream tasks. The learned

embeddings are used as inputs for GNN backbones.

• InFoRM [16] formulates individual fairness loss in a graph

based on Lipschitz condition.We add the proposed individual

fairness loss to GNN backbone training.

5.3 Effectiveness of GUIDE
We aim to answer RQ1 in ths subsection. Experiment results are

presented in Table 3. Our goal is to (1) minimize overall individual

unfairness such that similar individuals can have similar outputs, (2)

minimize GDIF such that there is less disparity of individual fairness

for different groups, and (3) maintain good utility performance for

the node classifcaition task.

• First, from the perspective of fairness promotion, GUIDE

achieves lowest individual unfairness and lowest GDIF com-

pared to all baseline models, indicating its superior perfor-

mance in achieving both fairness objectives across different

datasets and GNN backbones.

• Second, we observe GUIDE maintains relatively comparable

utility performances compared to vanilla and baseline mod-

els. This illustrates that GUIDE can effectively perform the

given supervised task of node classification.

• Third, from the perspective of balancing utility and fairness

objectives, GUIDE achieves the best performances in both

minimizing overall individual unfairness and minimizing

GDIF while scoring comparably in utility performance with

vanilla and baseline models. Thus, we claim it achieves a

good trade-off in balancing the utility and fairness objectives.

5.4 Effect of Personalized Weights
To answer RQ2, we analyze the advantage of the adopted person-

alized aggregation weights over fixed aggregation weights towards
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Table 3: Experiment results on Credit, Income and Pokec-n datasets. Model indicates the debiasing algorithm and Vanilla
represents no debiasing is performed. ↑ denotes the larger, the better; ↓ means the opposite. Best performances are in bold.
Individual (un)fairness numbers are reported in thousands. All entries are averages and standard deviations.

Credit
Model AUC(↑) IF(↓) GDIF(↓) AUC(↑) IF(↓) GDIF(↓) AUC(↑) IF(↓) GDIF(↓)

GCN GIN Jumping Knowledge

Vanilla 0.68±0.04 39.02±3.78 1.32±0.07 0.71±0.00 120.02±15.42 1.75±0.21 0.64±0.11 31.06±13.90 1.32±0.06

FairGNN 0.68±0.01 23.33±12.59 1.33±0.10 0.68±0.02 77.32±48.47 2.18±0.19 0.66±0.02 2.61±1.92 1.52±0.42

NIFTY 0.69±0.00 30.80±1.39 1.24±0.02 0.70±0.01 56.43±37.85 1.63±0.27 0.69±0.00 26.44±2.39 1.24±0.03

PFR 0.64±0.13 36.58±6.91 1.41±0.08 0.71±0.01 162.58±103.87 2.40±1.23 0.67±0.05 36.30±18.22 1.35±0.03

InFoRM 0.68±0.00 2.41±0.00 1.46±0.00 0.69±0.02 2.94±0.28 1.76±0.17 0.67±0.05 5.66±5.31 1.47±0.16

GUIDE 0.68±0.00 1.93±0.11 1.00±0.00 0.68±0.00 2.43±0.02 1.00±0.00 0.68±0.00 2.34±0.11 1.00±0.00
Income

GCN GIN Jumping Knowledge

Vanilla 0.77±0.00 369.11±0.03 1.29±0.00 0.81±0.01 2815.59±1047.33 1.87±0.48 0.80±0.00 488.73±166.83 1.18±0.16

FairGNN 0.76±0.00 249.73±87.53 1.17±0.04 0.79±0.00 1367.93±875.64 3.30±1.18 0.77±0.00 219.30±42.92 1.30±0.12

NIFTY 0.73±0.00 42.14±5.83 1.38±0.04 0.79±0.01 608.98±314.83 1.17±0.26 0.73±0.02 48.25±10.48 1.39±0.09

PFR 0.75±0.00 245.97±0.58 1.32±0.00 0.79±0.00 2202.64±445.24 2.36±1.17 0.73±0.13 327.57±155.49 1.12±0.23

InFoRM 0.78±0.00 195.61±0.01 1.36±0.00 0.80±0.01 308.45±13.92 1.62±0.30 0.79±0.00 192.58±12.87 1.35±0.11

GUIDE 0.73±0.01 33.19±10.17 1.00±0.00 0.74±0.02 83.88±20.29 1.00±0.00 0.74±0.01 42.49±21.93 1.00±0.00
Pokec-n

GCN GIN Jumping Knowledge

Vanilla 0.77±0.00 951.72±37.28 6.90±0.12 0.76±0.01 4496.47±1535.62 8.35±1.24 0.79±0.00 1631.27±93.94 8.47±0.45

FairGNN 0.69±0.03 363.73±78.38 6.21±1.28 0.69±0.01 416.28±402.83 4.84±2.94 0.70±0.00 807.97±281.26 11.68±2.89

NIFTY 0.74±0.00 85.25±10.55 5.06±0.29 0.76±0.01 2777.36±346.29 9.28±0.28 0.73±0.01 477.31±165.68 8.20±1.33

PFR 0.53±0.00 98.25±9.44 15.84±0.03 0.60±0.01 628.27±85.89 6.20±0.79 0.68±0.00 729.77±74.62 15.66±5.47

InFoRM 0.77±0.00 230.45±6.13 6.62±0.10 0.75±0.01 271.65±30.63 6.83±1.34 0.78±0.01 315.27±25.21 6.80±0.54

GUIDE 0.73±0.02 55.05±30.87 1.11±0.03 0.74±0.01 120.65±17.33 1.12±0.03 0.75±0.02 83.09±18.70 1.13±0.02

achieving the fairness objectives. Intuitively, personalized aggrega-

tion weights learned with attention in GUIDE should be better at

capturing neighbor-specific information for each node in the simi-

larity matrix. This effect should allow the model to perform targeted

optimization on node pairs so it should have better performances in

the fairness objectives. To analyze the effect of personalized aggre-

gation weights, we use aggregation mechanism with fixed aggrega-

tion weights in place of GUIDE’s attention aggregation mechanism.

Specifically, we use the aggregation mechanism of three popular

GNN frameworks: GCN [18], GIN [30] and JumpingKnowledge [31]

to evaluate the performance differences against GUIDE. They are

trained with the same total loss function as GUIDE. We name this

variant GUIDE\Att here for reference. We explore the utility per-

formance (measured by AUCROC), and fairness performances in

overall individual unfairness, and group disparity of individual fair-

ness. Specifically, GUIDE should have better fairness objectives

performances with comparable utility performance. We present

results on Pokec-n with GCN, GIN, and JumpingKnowledge GNN

backbones in Fig 4. Similar observations can also be found on other

datasets. From Fig (4a) and Fig (4c), we observe that both GUIDE

and GUIDE\Att achieve similar levels of utility and GDIF perfor-

mances. However, Fig (4b) shows that GUIDE has lower overall

individual unfairness. This may indicate that personalized aggrega-

tion weights from GUIDE can indeed provide better tradeoff of the

optimized objectives: achieving lower overall individual unfairness

while minimizing GDIF and maintaining utility performance than

the variant using fixed aggregation weights. We hypothesize that

the better tradeoff derives from targeted optimization of node pairs.

Specifically, the aggregation weights for each node are personalized

with respect to the optimization objectives so these weights can

be optimized on a case-by-case basis for each node pair. In next

subsection, we analyze the personalized aggregation weights fur-

ther to see if there is any relationship between them and each node

pairs’ influences on the objectives such as GDIF.

5.5 Aggregation Weights Analysis
In this subsection, we verify if the learned pairwise attentionweights

from GUIDE are personalized adaptively for each node pair to ben-

efit the corresponding optimized objectives.

Intuitively, model with personalized aggregation weights instead

of fixed aggregation weights can better capture the neighbor spe-

cific influences on optimized objectives such as GDIF. Here we

aim to analyze if GUIDE induce more adjustments on the attention

weights of node pairs that have large influences on GDIF than other

node pairs when GDIF is added to the total loss. To verify if such

targeted optimization of GDIF takes effect, we conduct correlation

test between node pairs’ GDIF influence and their corresponding

attention weights changes Δ𝜆 from optimizing the GDIF objective.

We first approximate the influence on GDIF from different pairs

of nodes by leave-one-out calculations. We obtain model outputs

from GUIDE trained with only utility and individual fairness ob-

jectives (i.e. trained with 𝛽 = 0) and calculate a benchmark GDIF

denoted as 𝐺𝐷𝐼𝐹
benchmark

. Next, for a specific node pair (𝑖, 𝑗), we
leave them out of the GDIF calculation, i.e.,



𝑧𝑖 − 𝑧 𝑗 

2
2
S[𝑖, 𝑗] and
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Figure 4: Performance results of GUIDE and its variant GUIDE\Att. (a) Node classification performance comparison between
GUIDE and GUIDE\Att; (b) Individual fairness promotion comparison between GUIDE and GUIDE\Att; (c) GDIF optimization
comparison between GUIDE and GUIDE\Att.
Table 4: Two-tailed correlation test of node pairs’ GDIF in-
fluence and attention weight changes.

Dataset Credit Income
Correlation of 𝐶𝑖, 𝑗 and Δ𝜆𝑖, 𝑗 0.036 0.044

T-statistics 46.638 62.904

Number of samples 1, 687, 444 1, 997, 641

𝑧 𝑗 − 𝑧𝑖

2
2
S[ 𝑗, 𝑖] are removed from the calculation of individual

unfairness of corresponding groups (𝑈1 ...𝑈𝐺 ). We denote this GDIF

as𝐺𝐷𝐼𝐹−(𝑖, 𝑗) . Finally, we define the influence of node pair (𝑖, 𝑗) as:
𝐶𝑖, 𝑗 = 𝐶 𝑗,𝑖 = |𝐺𝐷𝐼𝐹−(𝑖, 𝑗) −𝐺𝐷𝐼𝐹benchmark

|. (12)

We then calculate the absolute value of change in attention weights

between GUIDE trained with and without GDIF objective (𝛽 = 0

and 𝛽 ≠ 0) to represent how attention weights changed when GDIF

objective is optimized.

Δ𝜆𝑖, 𝑗 = |𝜆𝛽≠0
𝑖, 𝑗

− 𝜆𝛽=0
𝑖, 𝑗

|. (13)

We propose the null hypothesis that there is no linear relationship

between changes in attention weights and node pairs’ influences

on GDIF when GDIF is optimized. Hence, the null hypothesis is

correlation 𝜌 between 𝐶𝑖, 𝑗 and Δ𝜆𝑖, 𝑗 is 0 (𝐻0 : 𝜌 = 0) and the

alternative hypothesis that 𝜌 is not 0 (𝐻𝑎 : 𝜌 ≠ 0). We also set null

hypothesis rejection threshold of p-value as 0.01. The two-tailed

correlation test results for Credit and Income datasets are listed in

Table 4.We observe positive correlations between influence onGDIF

andmagnitude of change in attention weight for node pairs. We also

observe very significant t-stats. The p-values are significantly below

0.01. Hence, it is indicative that we can reject the null hypothesis

and claim GUIDE can yield personalized attention weights for node

pairs with respect to their influences on GDIF.

6 RELATEDWORK
Algorithmic fairness. Researchers have formulated a variety of

algorithmic fairness notions and they can be broadly categorized

as group fairness, counterfactual fairness, and individual fairness.

Group fairness is defined as enforcing equal outcome statistics such

as true positives across different groups. Zafar et al. [33] propose

demographic parity which requires equal likelihood of positive out-

come regardless of group membership. Hardt et al. [13] present

equal opportunity which argues people from different groups should

have equal true positive rates. Both works formalize the fairness

notions as optimization constraints in model utility maximization.

Counterfactual fairness promotes fixed model outcomes for individ-

uals regardless of what their sensitive attributes are in reality or

counterfactual scenarios. Agarwal et al. [1] perturb node features

and flip node sensitive attributes to arrive three different model

outputs and minimize the triplet similarity distance to achieve

counterfactul fairness. For Individual Fairness, Dwork et al. [9] pro-

pose individual fairness which requires treating similar individuals
similarly. They formulate it as an optimization problem involv-

ing pairwise individual similarity and Lipschitz condition. Lahoti

et al. [20] treat individual fairness as a low-rank representation

learning problem by minimizing output distances multiplied by in-

dividual similarity. García-Soriano et al. [10] minimize the amount

of individual unfairness after enforcing group fairness by optimiz-

ing a max-min ranking problem. Majority of these models rely on

Lipschitz condition and we have found this formulation could result

in different levels of individual fairness for different groups which

leads to discrimination against certain demographic subgroups. To

our best knowledge, we are the first to investigate this issue in

individual fairness and provide a viable solution.

Fairness in graph mining. As graph mining models are increas-

ingly adopted for many learning tasks, numerous solutions have

been proposed to mitigate potential unfairness in graph mining

algorithms [7]. For group fairness, Rahman et al. [22] propose the

notion of equality of representation which extends statistical parity

to the node2vec model. Bose et al. [3] propose a compositional

adversarial method to remove the influence of sensitive attributes

in learned embeddings. Dai et al. [4] develop a similar adversarial

framework but debiasing is performed in end-to-end GNN predic-

tions. For individual fairness, Kang et al. [16] optimize individual

fairness by deriving an individual fairness loss on graph datasets

and reduce it before, during, and after training of the graph mining

model. Dong et al. [5] treat optimization of individual fairness in

GNNs as a ranking problem which bypasses the limitation of Lips-

chitz condition. Our approach differs from these cited works in that

we not only optimize overall individual fairness but also explicitly

equalize the levels of fairness across groups such that sensitive

attributes such as race or age do not affect the level of individual

fairness one experiences when compared to similar individuals.

7 CONCLUSION
Graph Neural Networks have shown superior performances in a

variety of tasks and are increasingly adopted in high-stake decision-

making systems. However, there has been heightened concerns that
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GNNs could generate unfair decisions for underprivileged groups

or individuals without fairness constraints. Out of various proposed

algorithmic fairness notions on GNNs, individual fairness has finer

granularity on the individual level and promotes treating similar
individuals similarly. However, in our analysis of several works

on individual fairness, we have found that their formulation from

Lipschitz condition could lead to different levels of individual fair-

ness for different groups, thus creating discrimination on the group

level. We tackle this problem by developing a novel GNN frame-

work: GUIDE which incorporates an attention based GNN that

learns individually personalized attention weights for achieving

group equality informed individual fairness. We conduct extensive

experiments on real-world datasets to demonstrate the effectiveness

of our proposed framework and the results show GUIDE substan-

tially remove group disparity of individual fairness, achieve overall

individual fairness, and maintain utility performance.
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Figure 5: Performance results of GUIDE for Credit dataset on GCN with varying hyperparameters 𝛼 for the overall individual
unfairness objective and 𝛽 for the GDIF objective.

A APPENDIX
A.1 Reproducibility
In this section, we present the details of the implementation of

GUIDE and other baselines presented in Section 5.2

Experiment settings on datasets. For all three datasets, we ran-
domly shuffle the nodes and take 25% of the labeled nodes as val-

idation set and 25% of the labeled nodes as test set. For size of

the training set, we use 6,000 labeled nodes (25%) for Credit, 3,000

labeled nodes (20%) for Income, and 4,398 labeled (6%) for Pokec-

n. For Pokec-n, the edges are provided as the friendship linkages

whereas for the other two dataset, there are no given edges. So we

construct edges based on feature similarity. Specifically for a given

pair of nodes, if the Euclidean distances of their features meet some

threshold, we consider them connected.

Training settings. All models including baselines are trained with

Adam optimizer [17] with learning rate as 1e-3 and weight decay as

1e-5. All models are trained with hidden dimension as 16 and num-

ber of epochs is 3,000. The best model for each framework/backbone

combination is saved based on validation performance and is ap-

plied to the test set for results shown in Table 3.

Implementation details and hyperparameters. The proposed
framework GUIDE is implemented in PyTorch and the code is avail-

able here: https://github.com/mikesong724/GUIDE. Mode details

on model implementations and hyperparameters are listed below:

• GUIDE. We use 𝛼 = 5𝑒 − 6, 𝛽 = 1 for Credit, 𝛼 = 1𝑒 − 7, 𝛽 =

0.25 for Income, and 𝛼 = 2.5𝑒 − 7, 𝛽 = 0.05 for Pokec-n.

• FairGNN. We use 𝛼 = 4, 𝛽 = 1000 for Credit, 𝛼 = 4, 𝛽 = 10

for Income, and 𝛼 = 4, 𝛽 = 100 for Pokec-n.

• NIFTY.We use 𝜆 = 0.5 across all datasets.

• PFR.We use the debiased embeddings from PFR as inputs

to GNN backbones. PFR utilizes two relationship matrices:

𝑊𝑋 for feature similarities derived from k-nearest-neighbor

and𝑊𝐹 from human judgement for pairwise similarities. In

order to compare it with other baselines, we use A and S for
them respectively. For hyperparameter we use 𝜆 = 0.5 for

Credit and Income, and 𝜆 = 0.25 for Pokec-n.

• InFoRM. InFoRM has three debiasing steps: the preprocess-

ing, inprocessing and postprocessing. We adopt the main

individual fairness loss term from their paper and add it to

vanilla GNN backbone with hyperparameter 𝛼 to vary its

weight. We uses 𝛼 = 5𝑒 − 6 for Credit, 𝛼 = 1𝑒 − 7 for Income

and Pokec-n.

Packages required for implementations. The main packages

and their versions are provided below for our implementations.

• Python==3.7.11

• PyTorch==1.10.0

• CUDAtoolkit==11.1.1

• torch-scatter==2.0.9

• torch-sparse==0.6.13

• torch-geometric==2.0.1

• NetworkX==2.6.3

• NumPy==1.21.6

• SciPy==1.7.3

• AIF360 == 0.3.0

A.2 Hyperparameter Sensitivity
For the proposed GUIDE framework, there are two main hyper-

parameters 𝛼 and 𝛽 to optimize the overall individual unfairness

objective and group disparity of individual fairness (GDIF) objec-

tive respectively. To study their effects on GUIDE’s performance on

each of the three objectives, we conduct hyperparameter sensitivity

experiments in this subsection and vary 𝛼 among {1e-10, 1e-9, 1e-8,
1e-7, 1e-6, 1e-5, 1e-4} and 𝛽 among {1e-4, 1e-3, 1e-2, 1e-1, 1, 1e+1,
1e+2}. The results are presented in Figure 5.

• From Figure 5a, we observe that for 𝛼 < 1𝑒−5 and 𝛽 < 1𝑒 +1
the node classification task performance is not deteriorated.

When 𝛼 and 𝛽 become larger that these two thresholds, the

classification performance decreases. Interestingly, 𝛽 seems

to have a more abrupt effect than 𝛼 .

• From Figure 5b, we observe that increasing 𝛼 and 𝛽 both

decrease the overall individual unfairness while increasing

𝛼 has a stronger effect in reducing individual unfairness as

it specifically minimizes this objective.

• From Figure 5c, we clearly observe that when 𝛽 is small,

GDIF stays elevated no matter how we vary 𝛼 . In fact, when

𝛽 = 1𝑒−4, the GDIF increases as 𝛼 increases. It demonstrates

that existing method for individual fairness optimization

disregards GDIF objective. As we increase 𝛽 , GDIF is suc-

cessfully reduced and group equality of individual fairness

(𝐺𝐷𝐼𝐹 = 1) for the two groups is achieved.

https://github.com/mikesong724/GUIDE
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